
101

The POOLtype processor

(Version 3, September 1989)

Section Page
Introduction . 1 102
The character set . 4 103
String handling . 12 106
System-dependent changes . 21 109
Index . 22 110

The preparation of this report was supported in part by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘TEX’ is a trademark of the American Mathematical Society.

June 11, 2023 at 13:13

102 INTRODUCTION POOLtype §1

1. Introduction. The POOLtype utility program converts string pool files output by TANGLE into a
slightly more symbolic format that may be useful when TANGLEd programs are being debugged.

It’s a pretty trivial routine, but people may want to try transporting this program before they get up
enough courage to tackle TEX itself. The first 256 strings are treated as TEX treats them, using routines
copied from TEX82.

2. POOLtype is written entirely in standard Pascal, except that it has to do some slightly system-dependent
character code conversion on input and output. The input is read from pool file , and the output is written
on output . If the input is erroneous, the output file will describe the error.

program POOLtype (pool file , output);
label 9999; { this labels the end of the program }
type 〈Types in the outer block 5 〉
var 〈Globals in the outer block 7 〉
procedure initialize ; { this procedure gets things started properly }

var 〈Local variables for initialization 6 〉
begin 〈Set initial values of key variables 8 〉
end;

3. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define do nothing ≡ { empty statement }

§4 POOLtype THE CHARACTER SET 103

4. The character set. (The following material is copied verbatim from TEX82. Thus, the same system-
dependent changes should be made to both programs.)

In order to make TEX readily portable to a wide variety of computers, all of its input text is converted
to an internal eight-bit code that includes standard ASCII, the “American Standard Code for Information
Interchange.” This conversion is done immediately when each character is read in. Conversely, characters
are converted from ASCII to the user’s external representation just before they are output to a text file.

Such an internal code is relevant to users of TEX primarily because it governs the positions of characters
in the fonts. For example, the character ‘A’ has ASCII code 65 = 1́01 , and when TEX typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TEX doesn’t know what the real position is; the program that does the actual printing from TEX’s device-
independent files is responsible for converting from ASCII to a particular font encoding.

TEX’s internal code also defines the value of constants that begin with a reverse apostrophe; and it provides
an index to the \catcode, \mathcode, \uccode, \lccode, and \delcode tables.

5. Characters of text that have been converted to TEX’s internal form are said to be of type ASCII code ,
which is a subrange of the integers.

〈Types in the outer block 5 〉 ≡
ASCII code = 0 . . 255; { eight-bit numbers }

This code is used in section 2.

6. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 4́0 through 1́76 ; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text char to stand for the data type of
the characters that are converted to and from ASCII code when they are input and output. We shall also
assume that text char consists of the elements chr (first text char) through chr (last text char), inclusive.
The following definitions should be adjusted if necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 255 { ordinal number of the largest element of text char }

〈Local variables for initialization 6 〉 ≡
i: integer ;

This code is used in section 2.

7. The TEX processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Globals in the outer block 7 〉 ≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [ASCII code] of text char ; { specifies conversion of output characters }
See also sections 12, 13, and 18.

This code is used in section 2.

104 THE CHARACTER SET POOLtype §8

8. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the xchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement TEX with less complete character sets, and in such
cases it will be necessary to change something here.

〈Set initial values of key variables 8 〉 ≡
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;

See also sections 10, 11, and 14.

This code is used in section 2.

9. Some of the ASCII codes without visible characters have been given symbolic names in this program
because they are used with a special meaning.

define null code = 0́ {ASCII code that might disappear }
define carriage return = 1́5 {ASCII code used at end of line }
define invalid code = 1́77 {ASCII code that many systems prohibit in text files }

§10 POOLtype THE CHARACTER SET 105

10. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in xchr [0 . . 3́7], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of xchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘≠’ instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an xchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than 4́0 . To get the
most “permissive” character set, change ´ ´ on the right of these assignment statements to chr (i).

〈Set initial values of key variables 8 〉 +≡
for i← 0 to 3́7 do xchr [i]← ´ ´;
for i← 1́77 to 3́77 do xchr [i]← ´ ´;

11. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr . Note that if xchr [i] = xchr [j] where i < j < 1́77 , the value of xord [xchr [i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 4́0 in case there
is a coincidence.

〈Set initial values of key variables 8 〉 +≡
for i← first text char to last text char do xord [chr (i)]← invalid code ;
for i← 2́00 to 3́77 do xord [xchr [i]]← i;
for i← 0 to 1́76 do xord [xchr [i]]← i;

106 STRING HANDLING POOLtype §12

12. String handling. (The following material is copied from the get strings started procedure of TEX82,
with slight changes.)

〈Globals in the outer block 7 〉 +≡
k, l: 0 . . 255; { small indices or counters }
m,n: text char ; { characters input from pool file }
s: integer ; { number of strings treated so far }

13. The global variable count keeps track of the total number of characters in strings.

〈Globals in the outer block 7 〉 +≡
count : integer ; { how long the string pool is, so far }

14. 〈Set initial values of key variables 8 〉 +≡
count ← 0;

15. This is the main program, where POOLtype starts and ends.

define abort (#) ≡
begin write ln (#); goto 9999;
end

begin initialize ;
〈Make the first 256 strings 16 〉;
s← 256;
〈Read the other strings from the POOL file, or give an error message and abort 19 〉;
write ln (´(´, count : 1, ´ characters in all.)´);

9999: end.

16. define lc hex (#) ≡ l← #;
if l < 10 then l← l + "0" else l← l − 10 + "a"

〈Make the first 256 strings 16 〉 ≡
for k ← 0 to 255 do

begin write (k : 3, ´: "´); l← k;
if (〈Character k cannot be printed 17 〉) then

begin write (xchr ["^"], xchr ["^"]);
if k < 1́00 then l← k + 1́00
else if k < 2́00 then l← k − 1́00

else begin lc hex (k div 16); write (xchr [l]); lc hex (k mod 16); incr (count);
end;

count ← count + 2;
end;

if l = """" then write (xchr [l], xchr [l])
else write (xchr [l]);
incr (count); write ln (´"´);
end

This code is used in section 15.

§17 POOLtype STRING HANDLING 107

17. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘^^A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example xchr [3́2] = ´≠´, would like string 3́2 to be the single
character 3́2 instead of the three characters 1́36 , 1́36 , 1́32 (^^Z). On the other hand, even people with
an extended character set will want to represent string 1́5 by ^^M, since 1́5 is carriage return ; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters that are
treated anomalously in text files.

Unprintable characters of codes 128–255 are, similarly, rendered ^^80–^^ff.
The boolean expression defined here should be true unless TEX internal code number k corresponds to a

non-troublesome visible symbol in the local character set. An appropriate formula for the extended character
set recommended in The TEXbook would, for example, be ‘k ∈ [0, 1́0 . . 1́2 , 1́4 , 1́5 , 3́3 , 1́77 . . 3́77]’.
If character k cannot be printed, and k < 2́00 , then character k + 1́00 or k − 1́00 must be printable;
moreover, ASCII codes [4́1 . . 4́6 , 6́0 . . 7́1 , 1́36 , 1́41 . . 1́46 , 1́60 . . 1́71] must be printable. Thus, at
least 80 printable characters are needed.

〈Character k cannot be printed 17 〉 ≡
(k < " ") ∨ (k > "~")

This code is used in section 16.

18. When the WEB system program called TANGLE processes a source file, it outputs a Pascal program and
also a string pool file. The present program reads the latter file, where each string appears as a two-digit
decimal length followed by the string itself, and the information is output with its associated index number.
The strings are surrounded by double-quote marks; double-quotes in the string itself are repeated.

〈Globals in the outer block 7 〉 +≡
pool file : packed file of text char ; { the string-pool file output by TANGLE }
xsum : boolean ; { has the check sum been found? }

19. 〈Read the other strings from the POOL file, or give an error message and abort 19 〉 ≡
reset (pool file); xsum ← false ;
if eof (pool file) then abort (´! I can´´t read the POOL file.´);
repeat 〈Read one string, but abort if there are problems 20 〉;
until xsum ;
if ¬eof (pool file) then abort (´! There´´s junk after the check sum´)

This code is used in section 15.

108 STRING HANDLING POOLtype §20

20. 〈Read one string, but abort if there are problems 20 〉 ≡
if eof (pool file) then abort (´! POOL file contained no check sum´);
read (pool file ,m, n); { read two digits of string length }
if m 6= ´*´ then

begin if (xord [m] < "0") ∨ (xord [m] > "9") ∨ (xord [n] < "0") ∨ (xord [n] > "9") then
abort (´! POOL line doesn´´t begin with two digits´);

l← xord [m] ∗ 10 + xord [n]− "0" ∗ 11; { compute the length }
write (s : 3, ´: "´); count ← count + l;
for k ← 1 to l do

begin if eoln (pool file) then
begin write ln (´"´); abort (´! That POOL line was too short´);
end;

read (pool file ,m); write (xchr [xord [m]]);
if xord [m] = """" then write (xchr [""""]);
end;

write ln (´"´); incr (s);
end

else xsum ← true ;
read ln (pool file)

This code is used in section 19.

§21 POOLtype SYSTEM-DEPENDENT CHANGES 109

21. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make POOLtype work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

110 INDEX POOLtype §22

22. Index. Indications of system dependencies appear here together with the section numbers where
each identifier is used.

abort : 15, 19, 20.
ASCII code: 4.
ASCII code : 5, 6, 7.
boolean : 18.
carriage return : 9, 17.
char : 6.
character set dependencies: 10, 17.
chr : 6, 7, 10, 11.
count : 13, 14, 15, 16, 20.
decr : 3.
do nothing : 3.
eof : 19, 20.
eoln : 20.
false : 19.
first text char : 6, 11.
i: 6.
incr : 3, 16, 20.
initialize : 2, 15.
integer : 6, 12, 13.
invalid code : 9, 11.
k: 12.
l: 12.
last text char : 6, 11.
lc hex : 16.
m: 12.
n: 12.
null code : 9.
ord : 7.
output : 2.
pool file : 2, 12, 18, 19, 20.
POOLtype : 2.
read : 20.
read ln : 20.
reset : 19.
s: 12.
system dependencies: 2, 6, 8, 10, 17, 21.
The TEXbook: 10, 17.
text char : 6, 7, 12, 18.
true : 17, 20.
write : 16, 20.
write ln : 15, 16, 20.
xchr : 7, 8, 10, 11, 16, 17, 20.
xord : 7, 11, 20.
xsum : 18, 19, 20.

POOLtype NAMES OF THE SECTIONS 111

〈Character k cannot be printed 17 〉 Used in section 16.

〈Globals in the outer block 7, 12, 13, 18 〉 Used in section 2.

〈Local variables for initialization 6 〉 Used in section 2.

〈Make the first 256 strings 16 〉 Used in section 15.

〈Read one string, but abort if there are problems 20 〉 Used in section 19.

〈Read the other strings from the POOL file, or give an error message and abort 19 〉 Used in section 15.

〈Set initial values of key variables 8, 10, 11, 14 〉 Used in section 2.

〈Types in the outer block 5 〉 Used in section 2.

	 Introduction
	 The character set
	 String handling
	 System-dependent changes
	 Index
	Names of the sections
	Character k cannot be printed
	Globals in the outer block
	Local variables for initialization
	Make the first 256 strings
	Read one string, but abort if there are problems
	Read the other strings from the POOL file, or give an error message and abort
	Set initial values of key variables
	Types in the outer block

