
The Expressg MetaPost package for drawing

box-line-annotation diagrams∗

Peter Wilson
Catholic University of America

Now at peter.r.wilson@boeing.com

(First published 1996/05/09)
2004/03/17

Abstract

The expressg MetaPost package provides facilities to assist in drawing
diagrams that consist of boxes, lines, and annotations. Particular support
is provided for creating express-g diagrams

Contents

1 Introduction 2

2 The expressg package 3
2.1 Internal variables . 3
2.2 Routines . 5

2.2.1 Utility routines . 6
2.2.2 Path routines . 7
2.2.3 Line drawing routines . 8
2.2.4 Box drawing routines . 10

2.3 Extra BLA variables and routines 13

3 An example 17
3.1 Diagram 1: Some boxes and lines 18
3.2 Diagrams 2–5: EXPRESS-G like models 24

3.2.1 Diagram 2: Schema level diagram 25
3.2.2 Diagram 3: Tree structure 28
3.2.3 Diagram 4: Supertypes and subtypes 32
3.2.4 Diagram 5: Portion of larger model 36

3.3 Diagrams 6–11: Car model . 41
3.3.1 Diagram 6: express-g . 42

∗This file (expressg.dtx) has version number v1.61, last revised 2004/03/17.

1

3.3.2 Diagram 7: Shlaer-Mellor 43
3.3.3 Diagram 8: IDEF1X . 45
3.3.4 Diagram 9: OMT . 47
3.3.5 Diagram 10: E-R . 48
3.3.6 Diagram 11: NIAM . 52

3.4 Comments . 55
3.5 Running the MetaPost example file 55

3.5.1 Using pdfLATEX . 58
3.6 Using LATEX instead of TEX . 60
3.7 Using PostScript fonts . 61

4 The MetaPost code 61
4.1 Variables . 61
4.2 Utility routines . 65
4.3 Path routines . 69
4.4 Line end drawing routines . 69
4.5 Line drawing routines . 73
4.6 Box drawing routines . 81
4.7 Extra BLA variables and routines 86

List of Figures

1 Length parameters for arrowhead and fanin line end styles 4
2 Parameters for (inset) boxes . 5
3 Results of the VH, VhV and HvH routines 6
4 Results of the VyV and HxH routines 7
5 Calculated points on rectangular boxes 10
6 Calculated points on rhomboidal boxes 13
7 Length parameters for diamond line end styles 14
8 Calculated points on diamond boxes 15
9 Calculated points on a drum . 17

1 Introduction

express-g is an ISO international standard graphical information modeling lan-
guage [ISO94, SW94], and is a subset of the express lexical object-flavoured infor-
mation modeling language. Like most graphical modeling languages, express-g
diagrams consist of boxes, lines, and annotations associated with the boxes and
the lines. As a colleague of mine once put it, these kinds of graphical languages
are BLA (boxes, lines, annotations) with respect to lexical languages.

MetaPost [Hob92] is a powerful lexical language for producing Encapsulated
PostScript1 diagrams, and is based on the METAFONT [Knu86] language for
creating fonts.

1PostScript is a registered trademark of Adobe Systems Incorporated.

2

The expressg package provides extensions to the base MetaPost language to
facilitate the creation of express-g diagrams. The package may also be used as
is, or certainly by extension, for the creation of other BLA diagrams.

MetaPost is typically used to generate pictures for inclusion in LATEX doc-
uments [Lam94]. By default it uses TEX for typesetting any text; this behaviour
can be modified so that LATEX is used instead. If standard PostScript fonts (like
Times) are used, then LATEX typesetting may be avoided altogether. Running
MetaPost and methods of including MetaPost diagrams in (pdf)LaTeX doc-
uments are described in [Wil99].

The expressg package has been some years in the making. For occasional dia-
grams I got by with using either the simple LATEX picture commands, or general
GUI drawing packages. As time went on and the number and complexity of the
diagrams increased it became, to me at least, more important to use a robust
and powerful drawing language than fancy GUI packages. This was especially
important if a diagram had to be changed at a later date, as the language denoted
exactly how the drawing had been produced. With the GUI tools all that you
had was the picture and whatever graphics file format the tool used — there was
no user-sensible record of how any result was achieved. Also, generally speaking
I find it quicker to use MetaPost than a GUI tool as too much time has to be
spent using a mouse or a cursor to reposition and rescale the drawing elements.

Section 2 describes the facilities provided by the package. Several worked
example diagrams are presented in Section 3, together with information on how
to run MetaPost. Commented code for the package macros2 is in Section 4.

It is assumed that the reader has some understanding of MetaPost, although
the example in Section 3 does provide an aide-memoire for most of the MetaPost
constructs that are likely to be used in creating BLA diagrams. The definitive
MetaPost manual is [Hob92] but both [Hoe98] and [GRM97] give some inter-
esting examples of how to use it; in fact the front cover of Hoenig’s book is a
MetaPost picture. Similarly, some familiarity with BLA diagramming would be
of assistance.

I suggest that on first reading it may be sensible to skim Section 2 first and
then peruse the example in Section 3 more closely. After this go back and re-read
Section 2 as it then should make more sense.

This manual is typeset according to the conventions of the LATEX doc-
strip utility which enables the automatic extraction of the LATEX macro source
files [GMS94].

2 The expressg package

2.1 Internal variables

The package includes several internal variables that are initialised to commonly
appropriate values. This section describes the principal internal variables. Short

2If requested, I may be prepared to consider providing additional macros, but no promises.

3

��
����

HHH
HHH

-�

length

6

?

base width

��
����

HHH
HHH

-�

length

6

?

Figure 1: Length parameters for arrowhead and fanin line end styles

descriptions of the others, which are likely to be used in diagrams only very occa-
sionally, can be found in Section 4.

The values of internal variables in MetaPost can only be changed via assign-
ment. For example:

internal_variable := expression;

u is the value of the unit of length for a diagram; it is initialised to 1mm.u

maxx

maxy

All lengths, except for line thicknesses, are defined in terms of u. maxx and
maxy are the maximum x and y coordinate values for a diagram. These are ini-
tialised to the maximum size for a diagram within an ISO standard document
(i.e., maxx:=159.5u and maxy:=210u).

The next set of variables control the thickness of lines and the dimensions of
line end styles.

Lines with normal linethickness are drawn with normalpen.normalpen

Thick lines are drawn with thickpen.thickpen

Thin lines are drawn with thinpen.thinpenpen

Dotted lines are drawn with dotspen.dotspen

dotpen is for drawing the black dot line end style.dotpen

dotdiam is the diameter of an open circle or dot line end style.dotdiam

smoothrad is the radius of the circular arc used to round the join between twosmoothrad

straight lines.
drumlid is the ratio of the minor to major diameter of the ellipse forming thedrumlid

top of the drum box; the larger the value the more the apparent viewpoint shifts
to above the drum. The default value is 0.2.

An arrowhead is defined by the height of the triangle and the base of thegal

gab triangle forming the arrowhead, as shown in Figure 1. gal and gab are the length
and base width of arrows for arrowed line end styles.

Like an arrowhead, a fanin is defined by the height and the base of thegfl

gfb triangular fan shape, as shown in Figure 1. gfl and gfb are the length and base
width of fans for fanin line end styles. They are initialised to the default values.

The next set of variables control certain geometric aspects of the various
express-g boxes.

4

-�

length

6

?

height

� -
inset

Figure 2: Parameters for (inset) boxes

onelineh is the minimum height of a box that encloses a single line of text.onelineh

This is initialised to 5u.
The length (sdtbl), height (sdtbh) and line inset (sdtbs) for simple datasdtbl

sdtbh

sdtbs

type boxes (e.g., a BOOLEAN data type box), as illustrated in Figure 2. These
are initialised as 22u, onelineh and 2u respectively.

The length (sdtebl), height (sdtebh) and line inset (sdtebs) for a simplesdtebl

sdtebh

sdtebs

data type EXPRESSION box. The value of sdtebl is 28u, and the other values
are the same as for the other simple data type boxes.

The length (sdtbgel), height (sdtbgeh) and inset for GENERICENT datasdtbgel

sdtbgeh

sdtbges

type boxes. The value of sdtbgel is 38u, and the other values are the same as for
the other simple data type boxes.

The length (pconl) of an average numeric (proxy) page connector (e.g., forpconl

pconh (9,9 (9,9))) and the height (pconh) of an average page connector, which is
initialised for one line of text.

The heights of an average entity (enth), type — including enumeration andenth

typeh

schemah

select — (typeh), and schema (schemah) boxes. These are all initialised to cater
for one line of text.

ish is the height of an interschema reference box with one line of text. isrhish

isrh is the height of an interschema reference box with a rename, where there is one
line of text each for the original and renamed names.

The height (eventh) of a one-lined event box, and the slope (eventslope) ofeventh

eventslope the sides of an event box (e.g., 0.25 or 1/4).
The next set of variables control the amount of space surrounding text on

express-g diagrams.
nextra is the margin around names when put into entity, schema, interschemanextra

reference, page connector, and event boxes.
niextra is the margin around names when put into type boxes.niextra

ndextra is the margin around names when used on attribute lines.ndextra

2.2 Routines

The principal aspects of an express-g diagram are lines and line ends of vari-
ous styles, and boxes of several different kinds. Many routines are provided for

5

uzj

u
zk

e
zjvh

uzj

u
zk

e
zjvhv

ezkvhv
uzj

u
zk

ezjhvh

e
zkhvh

Figure 3: Results of the VH (left), VhV (middle) and HvH (right) routines

positioning and drawing these on a diagram.
The following sections describe most of the routines. Short descriptions of the

others, which are effectively only used as internal support routines, can be found
in Section 4.

A note on naming conventions used in describing the routines:

• As usual with MetaPost, a name starting with z is a point, and names
staring with x or y are x- and y-coordinates respectively.

• The letters i through n denote (point, coordinate) suffixes. Suffixes are
usually a number, such as 37, but may also have alphanumeric characters
after the number (e.g., 37C2D).

2.2.1 Utility routines

Several utility routines are provided defining some shortcuts and to ease some of
the calculations that may be required when producing a diagram.

VH(j, k) calculates the intersection point, zjvh, between the vertical lineVH

through the point zj and the horizontal line through the point zk, as shown in
Figure 3.

VhV(j, k) calculates the point zjvhv on the vertical line through the pointVhV

zj and the point zkvhv on the vertical line through the point zk, such that the line
zjvhv--zkvhv is horizontal and centered vertically between the two given points,
as shown in Figure 3.

HvH(j, k) calculates the point zjhvh on the horizontal line through the pointHvH

zj and the point zkhvh on the horizontal line through the point zk, such that the
line zjhvh--zkhvh is vertical and centered horizontally between the two given
points, as shown in Figure 3.

VyV(j, i, k) is a generalisation of the VhV routine. It calculates the pointVyV

zjvyv which is on the vertical line through zj and the horizontal line through yi,

6

uzj

e
zkvyv

e
zjvyv

uzk
yi

uzj

e
zkhxh

e
zjhxh

u
zk

xi

Figure 4: Results of the VyV (left) and HxH (right) routines

and the point zkvyv which is on the vertical line through zk and the horizontal
line through yi. An example result is shown in Figure 4.

HxH(j, i, k) is a generalisation of the HvH routine. It calculates the pointHxH

zjhxh which is on the horizontal line through zj and the vertical line through xi,
and the point zkhxh which is on the horizontal line through zk and the vertical
line through xi. An example result is shown in Figure 4.

namespace(〈name〉)(〈margin〉) calculates the length of the text string 〈name〉namespace

plus the 〈margin〉 length. You may use it like:
c = 3/2namespace(btex name etex)(4u)

dashes is shorthand for a dashed linestyle. Use it like: draw ... dashes;.dashes

dots is shorthand for a dotted linestyle. Use it like: draw ... dots;.dots

drawgrid draws a 16 by 21cm, 1cm spaced grid composed of thin dashed lines.drawgrid

Labels are typeset giving the distance of the lines from the bottom left corner of
the grid in millimetres.

2.2.2 Path routines

The package provides some general path making routines.
sharply(zi, zj, ... zn) will generate a piecewise linear path consisting ofsharply

the straight lines from point zi to point zj . . . to point zn. It may be used like:
draw sharply(z1, z2, z3, z4);
to draw a line through the given points.

Like the sharply routine, smoothly(zi, zj, ... zn) will generate a piece-smoothly

wise linear path consisting of the straight lines from point zi to point zj . . . to
point zn, except that the corners of the path at the interior points are rounded
with an arc of radius smoothrad. It may be used like:
draw smoothly(z1, z2, z3, z4) dashes;
to draw a dashed line with rounded corners at the given points. Or if a dotted
line is needed:

pickup dotspen;

7

draw smoothly(z1, z2, z3, z4) dots;

pickup normalpen;

Like the & operator, the binary ~ operator concatenates two paths replacing~

the sharp join with a circular arc of radius smoothrad.

2.2.3 Line drawing routines

Routines are provided for drawing a variety of lines with differing line ending
styles. Line styles include dotted, dashed, and continuous, and line thicknesses
may be normal or thick. Line end styles include open circles, black dots, open and
closed (black) arrowheads, and a fanin style.

The final uppercase characters of a line drawing routine indicate the kind of
line end style that will be used. The character O (uppercase O, not zero) is for an
Open circle, D is for a black Dot, OA is for an Open Arrowhead, CA is for a Closed
(black) Arrowhead, and F is for a Fanin.

The line ending drawing routines are described first. drawO(i, j) draws andrawO

open circle, diameter dotdiam, at the zj end of the vector from zi to zj.
drawD(i, j) draws a black dot, diameter dotdiam, at the zj end of the vectordrawD

from zi to zj.
drawOA(i, j) draws an open arrowhead, length gal and base width gab, atdrawOA

the zj end of the vector from zi to zj.
drawCA(i, j) draws a closed (black) arrowhead, length gal and base widthdrawCA

gab, at the zj end of the vector from zi to zj.
drawF(i, j) draws a fanin, length gfl and base width gfb, at the zj end ofdrawF

the vector from zi to zj.
The line drawing routines are essentially prepackaged versions of different com-

binations of the path and line ending routines.
drawdots(i, j) draws the dotted line zi--zj.drawdots

drawdotsthree(i, j, k) draws the dotted piecewise linear line zi--zj--zk.drawdotsthree

drawdotsfour(i, j, k, l) draws the dotted piecewise linear line zi--zj--zk--zl.drawdotsfour

drawdotsO(i, j) draws the dotted line zi--zj, ending in an open circle,drawdotsO

diameter dotdiam, at zj.
drawdotsthreeO(i, j, k) draws the dotted piecewise linear line zi--zj--zk.drawdotsthreeO

ending in an open circle, diameter dotdiam, at zk.
drawdotsfourO(i, j, k, l) draws the dotted piecewise linear line zi--zj--zk--zl,drawdotsfourO

ending in an open circle, diameter dotdiam, at zl.
drawdotsOO(i, j) draws the dotted line zi--zj, ending in open circles, di-drawdotsOO

ameter dotdiam, at zi and zj.
drawdash(i, j) draws the dashed line zi--zj.drawdash

drawdashthree(i, j, k) draws the dashed piecewise linear line zi--zj--zk.drawdashthree

drawdashfour(i, j, k, l) draws the dashed piecewise linear line zi--zj--zk--zl.drawdashfour

drawdashO(i, j) draws the dashed line zi--zj, ending in an open circle,drawdashO

diameter dotdiam, at zj.
drawdashthreeO(i, j, k) draws the dashed piecewise linear line zi--zj--zk.drawdashthreeO

8

ending in an open circle, diameter dotdiam, at zk.
drawdashfourO(i, j, k, l) draws the dashed piecewise linear line zi--zj--zk--zl.drawdashfourO

ending in an open circle, diameter dotdiam, at zl.
drawdashOO(i, j) draws the dashed line zi--zj--zk--zl. ending in opendrawdashOO

circles, diameter dotdiam, at zi and zj.
drawnormal(i, j) draws the normal thickness line zi--zj.drawnormal

drawnormalthree(i, j, k) draws the normal thickness piecewise linear linedrawnormalthree

zi--zj--zk.
drawnormalfour(i, j, k, l) draws the normal thickness piecewise lineardrawnormalfour

line zi--zj--zk--zl.
drawnormalO(i, j) draws the normal thickness line zi--zj, ending in andrawnormalO

open circle, diameter dotdiam, at zj.
drawnormalthreeO(i, j, k) draws the normal thickness piecewise linear linedrawnormalthreeO

zi--zj--zk, ending in an open circle, diameter dotdiam, at zk.
drawnormalfourO(i, j, k, l) draws the normal thickness piecewise lineardrawnormalfourO

line zi--zj--zk--zl, ending in an open circle, diameter dotdiam, at zl.
drawnormalOO(i, j) draws the normal thickness line zi--zj, ending in opendrawnormalOO

circles, diameter dotdiam, at zi and zj.
drawnormalD(i, j) draws the normal thickness line zi--zj, ending in a blackdrawnormalD

dot, diameter dotdiam, at zj.
drawnormalthreeD(i, j, k) draws the normal thickness piecewise linear linedrawnormalthreeD

zi--zj--zk, ending in a black dot, diameter dotdiam, at zk.
drawnormalfourD(i, j, k, l) draws the normal thickness piecewise lineardrawnormalfourD

line zi--zj--zk--zl, ending in a black dot, diameter dotdiam, at zl.
drawnormalDD(i, j) draws the normal thickness line zi--zj, ending in blackdrawnormalDD

dots, diameter dotdiam, at zi and zj.
drawnormalCA(i, j) draws the normal thickness line zi--zj, ending in adrawnormalCA

closed (black) arrowhead, length gal and base width gab, at zj.
drawnormalthreeCA(i, j, k) draws the normal thickness piecewise lineardrawnormalthreeCA

line zi--zj--zk ending in a closed (black) arrowhead, length gal and base width
gab, at zk.

drawnormalfourCA(i, j, k, l) draws the normal thickness piecewise lineardrawnormalfourCA

line zi--zj--zk--zl ending in a closed (black) arrowhead, length gal and base
width gab, at zl.

drawnormalOA(i, j) draws the normal thickness line zi--zj, ending in andrawnormalOA

open arrowhead, length gal and base width gab, at zj.
drawnormalF(i, j) draws the normal thickness line zi--zj, ending in adrawnormalF

fanin, length gfl and base width gfb, at zj.
drawnormalFO(i, j) draws the normal thickness line zi--zj, ending in adrawnormalFO

fanin, length gfl and base width gfb, at zi and an open circle, diameter dotdiam,
at zj.

drawthick(i, j) draws the thick line zi--zj.drawthick

drawthickO(i, j) draws the thick line zi--zj, ending in an open circle,drawthickO

diameter dotdiam, at zj.
drawthickOO(i, j) draws the thick line zi--zj, ending in open circles, di-drawthickOO

ameter dotdiam, at zi and zj.

9

u u u
u u u
u u u

zjbl zjbm zjbr

zjml zjc zjmr

zjtl zjtm zjtr

Figure 5: Calculated points on rectangular boxes (suffix is j and located at
zjbl=zj)

smooth(i, j, k) replaces the sharp corner on the line zi--zj--zk with ansmooth

arc radius smoothrad.
smoothtwo(i, j, k, l) replaces the sharp corners on the line zi--zj--zk--zlsmoothtwo

with arcs radius smoothrad.
smoothdash(i, j, k) replaces the sharp corner on the dashed line zi--zj--zksmoothdash

with an arc radius smoothrad.
smoothdots(i, j, k) replaces the sharp corner on the dotted line zi--zj--zksmoothdots

with an arc radius smoothrad.

2.2.4 Box drawing routines

Routines are provided for drawing the different kinds of express-g boxes.
The first argument to the box drawing routines is the suffix of the point that

will be the left-hand bottom corner point of the box. The last argument, except
where noted below, is the text that is to be placed at the center of the box.
Intermediate arguments, if any, are the length and height of the box.

Every box routine calculates the four corner points of the box and the mid-
points of each side of the box. For example, if the suffix is j, then as illustrated in
figure 5, the corner points will be called zjbl, zjbr, zjtr and zjtl and the mid-
points will be called zjbm, zjmr, zjtm and zjml. The center point for postioning
the text is zjc and the center of the text is placed at this point.

The text center point is not necessarily the geometric center of the box. The ge-
ometric center is not calculated but lies at the intersection of the lines zjml--zjmr
and zjbm--zjtm.

A SCHEMA box is rectangular with a normal perimeter and the box is divideddrawSCHEMA

into top and bottom halves by a horizontal line.
drawSCHEMA(j, len, ht)(btex schema_a etex) draws a SCHEMA double

rectangular box of length len and height ht with its left-hand bottom corner at
zj. The string schema_a is placed at the text center of the box, which is central
within the upper half.

A simple data type box is rectangular with a solid boundary and a soliddrawBINARY

interior vertical line near the right hand edge.

10

drawBINARY(j) draws a simple data type rectangular box of length sdtbl and
height sdtbh with its left-hand bottom corner at zj. The string BINARY is placed
at the text center of the box, which is central within the main part of the box.

drawBOOLEAN(j) draws a simple data type rectangular box of length sdtbldrawBOOLEAN

and height sdtbh with its left-hand bottom corner at zj. The string BOOLEAN is
placed at the text center of the box, which is central within the main part of the
box.

drawCOMPLEX(j) draws a simple data type rectangular box of length sdtbldrawCOMPLEX

and height sdtbh with its left-hand bottom corner at zj. The string COMPLEX is
placed at the text center of the box, which is central within the main part of the
box.

drawEXPRESSION(j) draws a simple data type rectangular box of lengthdrawEXPRESSION

sdtbel and height sdtbeh with its left-hand bottom corner at zj. The string
EXPRESSION is placed at the text center of the box, which is central within the
main part of the box.

drawGENERIC(j) draws a simple data type rectangular box of length sdtbldrawGENERIC

and height sdtbh with its left-hand bottom corner at zj. The string GENERIC is
placed at the text center of the box, which is central within the main part of the
box.

drawINTEGER(j) draws a simple data type rectangular box of length sdtbldrawINTEGER

and height sdtbh with its left-hand bottom corner at zj. The string INTEGER is
placed at the text center of the box, which is central within the main part of the
box.

drawLOGICAL(j) draws a simple data type rectangular box of length sdtbldrawLOGICAL

and height sdtbh with its left-hand bottom corner at zj. The string LOGICAL is
placed at the text center of the box, which is central within the main part of the
box.

drawNUMBER(j) draws a simple data type rectangular box of length sdtbl anddrawNUMBER

height sdtbh with its left-hand bottom corner at zj. The string NUMBER is placed
at the text center of the box, which is central within the main part of the box.

drawREAL(j) draws a simple data type rectangular box of length sdtbl anddrawREAL

height sdtbh with its left-hand bottom corner at zj. The string REAL is placed at
the text center of the box, which is central within the main part of the box.

drawSTRING(j) draws a simple data type rectangular box of length sdtbl anddrawSTRING

height sdtbh with its left-hand bottom corner at zj. The string STRING is placed
at the text center of the box, which is central within the main part of the box.

An ENUMERATION box is a rectangular box with a dashed perimeter anddrawENUM

an interior dashed vertical line near the right hand edge.
drawENUM(j, len, ht)(btex an_enum etex) draws a rectangular dashed

ENUMERATION type box of length len and height ht with its left-hand bot-
tom corner at zj. The string an_enum is placed at the text center of the box,
which is central within the main part of the box.

A SELECT box is rectangular with a dashed boundary and an interior dasheddrawSELECT

vertical line near the left hand edge.
drawSELECT(j, len, ht)(btex a_select etex) draws a rectangular dashed

SELECT type box of length len and height ht with its left-hand bottom corner at

11

zj. The string a_select is placed at the text center of the box, which is central
within the main part of the box.

A TYPE box is rectangular with a dashed boundary.drawTYPE

drawTYPE(j, len, ht)(btex a_type etex) draws a rectangular dashed
TYPE type box of length len and height ht with its left-hand bottom corner
at zj. The string a_type is placed at the text center of the box, which is central
within the main part of the box.

An ENTITY box is a rectangular box with a solid boundary.drawENT

drawENT(j, len, ht)(btex an_entity etex) draws a rectangular EN-
TITY type box of length len and height ht with its left-hand bottom corner
at zj. The string an_entity is placed at the text center of the box, which is also
the geometric center of the box.

A page reference box is a rectangle with rounded ends and a solid boundary.drawPREF

drawPREF(j, len, ht)(btex page ref etex) draws an oval page reference
box of length len and height ht with its left-hand bottom corner at zj. The string
page ref is placed at the text center of the box, which is also the geometric center
of the box.

An interschema box is a rectangle surrounding a page reference like box. ThedrawISU

rectangular box may have either a solid or a dashed boundary.
drawISU(j, len, ht)(btex sch.ent etex) draws a three-part rectangular

interschema USE box of length len and height ht with its left-hand bottom corner
at zj. The string sch.ent is placed at the text center of the box, which is also
the geometric center of the box.

drawISUR(j, len, ht)(btex sch.ent etex)(btex newname etex) drawsdrawISUR

a three-part rectangular interschema USE and RENAME box of length len and
height ht with its left-hand bottom corner at zj. The string sch.ent is placed
at the text center of the box, which is also the geometric center of the box. The
string newname is placed at the geometric center of the bottom third of the box
(this is the point zjrnm).

drawISR(j, len, ht)(btex sch.ent etex) draws a three-part rectangulardrawISR

dashed interschema REFERENCE box of length len and height ht with its left-
hand bottom corner at zj. The string sch.ent is placed at the text center of the
box, which is also the geometric center of the box.

drawISRR(j, len, ht)(btex sch.ent etex)(btex newname etex) drawsdrawISRR

a three-part rectangular dashed interschema REFERENCE and RENAME box
of length len and height ht with its left-hand bottom corner at zj. The string
sch.ent is placed at the text center of the box, which is also the geometric center
of the box. The string newname is placed at the geometric center of the bottom
third of the box (this is the point zjrnm).

An EVENT box is a rhomboid with a solid boundary.drawLEVENT

drawLEVENT(j, len, ht)(btex local_event etex) draws a rhomboidal
Local EVENT box of length len, height ht and slope eventslope with its left-
hand bottom corner at zj. The string local_event is placed at the text center of
the box, which is also the geometric center of the box. Like the rectangular boxes,
the calculated bottom and top middle points are vertically below and above the

12

�
�
�
�
�
�

�
�
�
�
�
�

u u
u u

u u

u
u
u

zjbl zjbm zjbr

zjml zjc zjmr

zjtl zjtm zjtr

Figure 6: Calculated points on rhomboidal boxes (suffix is j and located at
zjbl=zj)

geometric center, but this means that they are not midway beteen the bottom
and top corner points. This is illustrated in Figure 6.

drawGEVENT(j, len, ht)(btex global_event etex) draws a thick rhom-drawGEVENT

boidal Global EVENT box of length len, height ht and slope eventslope with
its left-hand bottom corner at zj. The string global_event is placed at the text
center of the box, which is also the geometric center of the box.

A circle box is a circle with a solid boundary.drawcirclebox

drawcirclebox(j, diam)(btex ABC etex) draws a circle diameter diam and
center at zj. The string ABC is placed at the center of the circle. In this case the
four midside points, zjbm, zjmr, zjtm and zjml, are at on the circle at the extreme
bottom, right, top and left (i.e., at the S, E, N and W compass points). The corner
points, zjbl, zjbr, zjtr and zjtl, are also on the circumference midway between
the midpoints (i.e., at the SW, SE, NE and NW compass points).

drawdashcircle(j, diam) draws a dashed circle. The location and size pa-drawdashcircle

rameters are the same as for drawcirclebox, as are the calculated points.

2.3 Extra BLA variables and routines

In addition to the facilities described above for express-g diagrams, extra line
styles and boxes are provided for other kinds of diagrams.

Additional line end styles are coded by: A for an Arrowhead, OD for an Open
Diamond, CD for a Closed Diamond.

The variables gdl and gdb hold the the length and base width of diamondgdl

gdb line end styles (see Figure 7), analagous to the corresponding variables for arrow
heads and fanin. By default, gdl is twice the default arrowhead length and gdb
is three quarters of the default arrowhead base width.

drawA(i, j) draws a simple arrowhead, length gal and base width gab, atdrawA

the zj end of the vector from zi to zj.
drawDCA(i, j) draws a double closed arrowhead, each of length gal and basedrawDCA

width gab, at the zj end of the vector from zi to zj.
drawOD(i, j) draws an open diamond, length gdl and base width gdb, atdrawOD

13

�
���

��

HH
HHHH

H
HHH

HH

��
����

-�

length

6

?

base width

Figure 7: Length parameters for diamond line end styles

the zj end of the vector from zi to zj.
drawCD(i, j) draws a closed (black) diamond, length gdl and base widthdrawCD

gdb, at the zj end of the vector from zi to zj.
drawdashA(i, j) draws the dashed line zi--zj, ending in an arrowhead,drawdashA

length gal and base width gab, at zj.
drawdashOA(i, j) draws the dashed line zi--zj, ending in an open arrow-drawdashOA

head, length gal and base width gab, at zj.
drawnormalOD(i, j) draws the normal thickness line zi--zj, ending in andrawnormalOD

open diamond, length gdl and base width gdb, at zj.
drawnormalCD(i, j) draws the normal thickness line zi--zj, ending in adrawnormalCD

closed (black) diamond, length gdl and base width gdb, at zj.
drawcircleA(j, diam) draws a circle diameter diam centered at zj. A coun-drawcircleA

terclockwise pointing arrow is placed at the top of the circle. The midside and
‘corner’ points are the same as calculated by the drawcirclebox routine.

drawDot(j, diam) draws a black dot, diameter diam centered at zj. TheredrawDot

are no calculated points.
drawCircledDot(j, diam) draws a black dot with a circle outside it, overalldrawCircledDot

diameter diam, centered at zj. There are no calculated points. This could be
used for a UML ‘bullseye’. The white ring should obscure anything drawn earlier
that lies underneath it (by definition the black dot covers up anything underneath
itself). For example:

draw z1--z2; % line from z1 to z2

drawCircledDot(2, len); % obscures last len of above line

draw z3--z2; % not obscured

Commands of the form draw...box have a text argument which is printed at
the center of the box. If an empty box is required the text argument should be an
empty string (""). For example draw...box(...)("").

drawcardbox(j, len, ht, fold)(btex note etex) draws a rectangulardrawcardbox

box, length len and height ht, with its bottom left corner at zj. The top right
corner of the box is folded down, with the side length of the fold given by fold.
The string note is placed at the center of the box. If no text is required, then use

14

�
�

�
��

Q
Q

Q
QQ

Q
Q

Q
QQ

�
�

�
��

u u u
u

u
u
u

u
u

zjc

zjbm

zjml zjmr

zjtm

zjbl zjbr

zjtl zjtr

Figure 8: Calculated points on diamond boxes (suffix is j and located at zjc=zj)

an empty string (i.e., ""), as in
\drawcardbox(23, el, eh, 1/8eh)("")

drawdiamondbox(j, len, ht)(btex str etex) draws a diamond shapeddrawdiamondbox

box, length len and height ht, with its center at zj. The usual corner, center
and midpoints are also calculated except that the points z$tm etc., are at the
corners of the diamond and the points z$tl etc., are at the middle of each line,
as shown in Figure 8. The text str is placed at the center of the box.

drawtwodiamondbox(j, len, ht, inset)(btex str etex) draws a dia-drawtwodiamondbox

mond shaped box, length len and height ht, with its center at zj. The text
str is placed at the center of the box. A second diamond is drawn inside the
first. The parameter inset is the space between adjacent outer and inner lines.
No calculated points are available for the inner diamond.

drawdoublerectangle(j, len, ht, tf) draws a rectangular box, lengthdrawdoublerectangle

len and height ht, located with its bottom left corner at zj. The box is divided
horizontally into a top and bottom portion, with the height of the top portion
being the fraction tf of the total height of the box. The center points of the two
portions are calculated as zjct and zjcb for the top and bottom respectively. The
ends of the dividing line are at zjtfl and zjtfr.

drawtriplerectangle(j, len, ht, tf, bf) draws a rectangular box, lengthdrawtriplerectangle

len and height ht, located with its bottom left corner at zj. The box is divided
horizontally into a top, middle and bottom portion. The height of the top portion
is the fraction tf of the total height of the box. The height of the bottom portion
is the fraction bf of the total height of the box. The center points of the three
portions are calculated as zjct, zjcm and zjcb for the top, middle and bottom
respectively. The ends of the dividing lines are at zjtfl and zjtfr for the upper
line, and at zjbfl and zjbfr for the lower line.

hiderectangle(j, len, ht) draws an invisible rectangular box, length lenhiderectangle

and height ht, located with its bottom left corner at zj. The box covers up
anything underneath it. Note that unlike all the other boxes the only point handle
to the box is the bottom left corner — the zjbl, zjtr, etc., points are not available
and hence cannot be used for positioning or alignment purposes.

drawdashboxover(j, len, ht) draws a dashed rectangular box, length lendrawdashboxover

15

and height ht, located with its bottom left corner at zj. The box covers up
anything underneath it.

drawindexbox(j, len, ht, lenp, htp)(btex str etex) draws a rectan-drawindexbox

gular box, length len and height ht, located with its bottom left corner at zj.
Another rectangular box, length lenp and height htp, is drawn with its bottom
left corner at the top left corner of the first box (like an index card). The main
box points are zjbl etc., but the secondary box points are zjP.bl, zjP.bm etc.
The text str is placed at the center (zjP.c) of the secondary box.

drawroundedbox(j, len, ht, rad)(btex str etex) draws a rectangulardrawroundedbox

box, length len and height ht, located with its bottom left corner at zj. The
corners of the box are rounded using radius rad. If 2rad is greater than len or
ht, then 2rad is reduced to the lesser of len and ht, thereby producing at least
one pair of semicircular sides. The text str is placed at the center of the box.

drawovalbox(j, len, ht)(btex str etex) draws an elliptical box, hori-drawovalbox

zontal diameter len and vertical diameter ht, located with its center at zj. Like
the diamond box, zjtm, zjmr, etc., are at the extremes of the ellipse and the points
zjtr, zjbr, etc., are on the ellipse approximately halfway between the extremum
points, similar to the positions shown in Figure 8. The text str is placed at the
center of the box.

drawoutputbox(j, len, ht)(btex str etex) draws a box, length len anddrawoutputbox

height ht, located with its bottom left corner at zj. The bottom of the box is a
wavy line and the other three sides are straight. The text str is placed at the
center of the box. This kind of box is often used as a flowchart symbol for output;
it is meant to be a represention of printed paper which has been torn from a long
continuous roll.

drawdashellipse(j, len, ht) draws a dashed ellipse. The location anddrawdashellipse

dimensional parameters correspond to those for drawovalbox, as do the calculated
points.

drawdrum(j, len, ht)(btex str etex) draws a ‘drum’ box. This is con-drawdrum

structed as a rectangular box of width width len and height ht, with its bottom
left hand corner at zj. The horizontal line at the bottom of the rectangle is re-
placed by a half-ellipse with a major diameter of len and the minor diameter given
by drumlid*len. The horizontal line at the top is replaced by a full ellipse with
the same dimensions.

As shown in Figure 9, the calculated points on the vertical sides of the drum
are the same as for a rectangular box. There are three calculated points on the
base of the drum, called zjbml, zjbm and zjbmr. Similarly there are three points
on the top of the drum called zjtml, zjtm and zjtmr. The center point, zjc is
halfway between the sides and halfway between the two lower ellipse halves. The
text str is placed at this center point.

drawstickman(j, len, ht) draws a genderless full frontal (or rear) stickdrawstickman

figure enclosed in an invisible box, length len and height ht, located with its
bottom left corner at zj. This can be used, for example to represent an actor in
a UML Use Case diagram. Setting the height to be twice the length produces a
reasonable result, for instance: drawstickman(3, wd, 2wd);

16

r

r

r

zjbl

zjml

zjtl

r

r

r

zjbr

zjmr

zjtr

r
zjbm

rzjtm

rzjc

r
zjbml

r
zjbmr

rzjtml rzjtmr

Figure 9: Calculated points on a drum (suffix is j and located at zjbl=zj)

3 An example

The example attempts to bring out the main methods that can be used in defining
express-g diagrams. The code for eleven diagrams is provided, none of which
necessarily has anything to do with a real example of express-g modeling, but
rather is meant to be illustrative of diagramming techniques.

This section is best studied with a copy of the printed diagrams to hand.
Section 3.5 on page 55 explains briefly how to run the example and obtain the
diagrams.

The default extension for a MetaPost file is .mp.
1 〈∗eg〉
2 %%% EXPEG.MP Example MetaPost EXPRESS-G diagrams

3

Assuming that the diagrams are to be eventually embedded in, or processed
through, a LATEX document then any TEX macros must come at the start of the
file between a verbatimtex . . . etex pair. When dealing with text, MetaPost
does not handle more than a single line. The macro below is to enable two lines
of text to be handled by MetaPost.

4

5 % use btex \twolines{first}{second} etex for two-line labels

6 verbatimtex \def\twolines#1#2{\vbox{\hbox{#1} \hbox{#2}}} etex

7

The expressg package file has to be input to make the routines available.
8 input expressg

9

17

3.1 Diagram 1: Some boxes and lines

Many diagrams can be defined in one file. Each diagram starts with beginfig(N),
where N is a unique integer, and ends with endfig;. Encapsulated PostScript for
each diagram is written to a file called mproot.N, where mproot is the root name
of the input file. In our case the output files will be expeg.1 through expeg.11.
10 beginfig(1)

11

The first diagram consists of some of the expressg box and line styles. The
main point is to illustrate how MetaPost allows the boxes to be aligned. Start
off by defining a point z1 at the origin. By default, a variable name starting
with the letter z is assumed to be a point. Similarly, variables starting with x
and y are assumed to be x- and y-coordinates. If zk is defined with a value then
automatically xk is the value of the x coordinate of the point zk and yk is the
value of the y coordinate. Conversely, if xj and yj are defined, zj is automatically
defined.

Note that the = sign denotes an equation, not an assignment. The power of
MetaPost comes from its ability to solve linear equations.

Having defined the point z1, draw an EXPRESSION box with its bottom left
hand corner at z1.
12 z1=(0,0);

13 drawEXPRESSION(1);

14

Remember that when a box is drawn, its corner and mid points are calculated.
These can be used in defining other points. In particular there is the point z1tr
which is the top right hand corner of the EXPRESSION box. Also, if another box
is drawn at point z2 then it will have its bottom left hand corner at z2bl.

The point z2bl is defined by a linear equation with respect to the point z2.
As MetaPost can solve linear equations, given the point z2bl it can solve for
the point z2.

The next box has its bottom left hand corner at the top right hand corner of
the EXPRESSION box, by specifying that the point z2bl and z1tr are the same
location and then drawing a box located at z2. The third (BOOLEAN) box is
also stacked in the same way with respect to the second (INTEGER) box.

15 z2bl=z1tr;

16 drawINTEGER(2);

17

18 z3bl=z2tr;

19 drawBOOLEAN(3);

20

Next a piece of circled text is drawn. Using the same method as before, the
bottom of the circle is made to be coincident with the middle of the top of the
BOOLEAN box. The namespace routine is used to specify the circle diameter.
Note that an argument to a routine can itself be a routine.
21 z4bm=z3tm;

18

22 drawcirclebox(4, namespace(btex ABS etex)(nextra))(btex ABS etex);

23

MetaPost is a typed language, and new variables can be declared of a par-
ticular type. A numeric variable holds a number (or a length). The diameter of
the circle just drawn is going to be used as a length in later parts of this diagram,
so it is sensible to store its value in a new variable called diam. We then use it in
drawing another circle directly on top of the first one.
24 numeric diam;

25 diam = namespace(btex ABS etex)(nextra);

26

27 z5bm=z4tm;

28 drawcirclebox(5, diam)(btex SAB etex);

29

The next element in the diagram is an ENTITY box. We use the default height
for the entity box and the default page connector length as its length (no reason,
but it saves inventing another variable or value).

The ENTITY box is positioned with respect to the SAB circle, but in a slightly
more complicated way than earlier positions. We want the left hand side of the
box to align with the right hand side of the circle. Also, the middle of the box
should align with the top of the circle.

The ENTITY box will be located at point z6. The easiest way is to specify
z6 is z6ml=(x5mr, y5tm), but to demonstrate more of MetaPost’s equation
solving abilities a more complicated approach is taken to the specification of the
x coordinate. The horizontal distance between the points z5ml and z5tl on the
circle is the same as the distance between the points z5tr and z5mr. We can
express this as x5ml-x5tl = x5tr-x5mr. As we want x6ml, which is the same as
x6bl, to be the same as x5mr we can substitute into this equation, as done in the
code below. Note that MetaPost can solve for the unknown x6bl even though it
is on the right hand side of the equation because the other three values are known.

The y coordinate of the point z6mr is specified as equal to the y coordinate of
the top of the circle. Because of the linear relations involving all the points on a
box, it is sufficient to provide one x coordinate and one y coordinate to fix all the
points on the box.
30 x5ml-x5tl = x5tr-x6bl;

31 y6mr=y5tm;

32 drawENT(6, pconl, enth)(btex an_ent etex);

33

The geometric center of the next box, an LEVENT, is vertically above the
geometric center of the ENTITY box, and the bottom of LEVENT is slightly
(one lenth unit) above the top of the ENTITY box. This is accomplished here
by specifying z7bm in terms of expressions involving the coordinates of the point
z6tm.
34 z7bm=(x6tm,y6tm+u);

35 drawLEVENT(7, pconl, eventh)(btex levent etex);

36

19

At point z8 a GEVENT box is drawn. It’s bottom left hand corner is vertically
above the top left hand corner of the LEVENT box. If you look at the resulting
diagram, you will see that GEVENT is shifted right with respect to LEVENT.
For vertical alignment of EVENT boxes it is best to use the middle rather than
corner points.
37 z8=(x7tl, y7tr+u);

38 drawGEVENT(8, pconl, eventh)(btex gevent etex);

39

For the last of the aligned boxes another aspect of MetaPost is used. Meta-mediation

Post provides a mediation facility whose syntax is frac[a,b]. The result of a
mediation is a value that is frac between the value a and the value b. For ex-
ample, the result of 0.25[10,30] is 15. Similarly, the result of 1/3[zj,zk] is the
point one third of the way between point zj and point zk.

The SCHEMA box is positioned with its bottom right hand corner at one
eighth of the way along, and at the top of, the BOOLEAN box.
40 z9br=1/8[z3tl,z3tr];

41 drawSCHEMA(9, pconl, schemah)(btex a_schema etex);

42

The second half of the diagram illustrates various line and end styles. These are
all horizontal, the same length and are aligned vertically, so define the x coordinate
xmid of the left hand end of the lines, and the length len of the lines.
43 numeric xmid, len;

44 xmid = x8tr + diam;

45 len = 2diam;

46

The next line of code exhibits another MetaPost function. A point can beshifted

specified as being some other point that is shifted by given amounts in the x and
y directions. More precisely, the shift is specified by a pair of values, written as
(a,b). The first line is aligned vertically with the center of the first box and its
start point is z11. The end point, z111, is specified as being the start point shifted
horizontally by the length of the line.
47 z11=(xmid, y1ml); z111=z11 shifted (len, 0);

48 drawdashO(11, 111);

49

Because we will be using the same horizontal shift for all the lines, define a
pair, called moveright, that is the required shift. The next two lines are also
aligned vertically with the centers of the second and third boxes.
50 pair moveright;

51 moveright = (len, 0);

52

53 z12=(xmid, y2ml); z121=z12 shifted moveright;

54 drawnormalO(12, 121);

55

56 z13=(xmid, y3ml); z131=z13 shifted moveright;

57 drawthickO(13, 131);

58

20

The remaining lines will have the same vertical spacing as the first three, so
define another pair, moveup, that we can use for vertical shift.
59 pair moveup;

60 moveup = (0, y13-y12);

61

62 z14=z13 shifted moveup; z141=z14 shifted moveright;

63 drawnormalD(14, 141);

64

65 z15=z14 shifted moveup; z151=z15 shifted moveright;

66 drawnormalCA(15, 151);

67

68 z16=z15 shifted moveup; z161=z16 shifted moveright;

69 drawnormalOA(16, 161);

70

71 z17=z16 shifted moveup; z171=z17 shifted moveright;

72 drawnormalF(17, 171);

73

The upper part of the diagram illustrates some of the additional line styles and
boxes provided that are not part of the express-g language.

The upper half is seperated from the bottom half by a dashed line, just to
make the distinction. The line is set above the highest box so far, which is located
at z8, and extends across the width of the diagram.
74 z300=(0,y8tm+diam); z301=(x111,y300);

75 draw z300--z301 dashes;

76

Define mup to be a distance, which we will use for vertical seperation.
77 numeric mup; mup := onelineh;

78

As previously, we’ll start with the boxes which will be placed in a column at
the left side of the diagram. The first box, high enough for one line of enclosed
text, has its top right hand corner folded down by one quarter the box height.
Text is placed at the center of the box, but if this is not required then it can be
given as an empty string (i.e., "").
79 z302=(0,y300+mup);

80 drawcardbox(302, pconl, onelineh, 1/4onelineh)("");

81

The next box is a diamond shape. Unlike the rectangular and rhomboidal
boxes, these are positioned via the center of the box instead of the bottom left
hand corner.
82 z303bm=(x302tm, y302tm+mup);

83 drawdiamondbox(303, pconl, 2onelineh)(btex jewel etex);

84

Now there is a double box with the top portion being 3/4 of the box height.
Text is put into the top half of the box using MetaPost’s labeling routine (see
page 26).

21

85 z304=(0, y303tm+mup);

86 drawdoublerectangle(304, pconl, 2onelineh, 3/4);

87 label(btex top etex, z304ct);

88

Next comes a triple box with the bottom portion being one fifth of the height,
and the top portion being two fifths of the height. Text is placed in the top and
middle portions, but not into the bottom.
89 z305=(0, y304tm+mup);

90 drawtriplerectangle(305, pconl, 3onelineh, 2/5, 0.2);

91 label(btex top etex, z305ct);

92 label("middle", z305cm);

93

Some languages include a box that looks a little like an index card, and this is
shown next. A small box is also drawn inside the main part of the index box, just
to illustrate that drawings may be placed inside boxes.
94 z306=(0,y305tm+mup);

95 drawindexbox(306, 2pconl, 3onelineh, 3/4pconl, onelineh)(btex pack etex);

96 z307=1/8[z306bl,z306tr];

97 drawENT(307, 1/4pconl, onelineh)(btex E etex);

98

Another box shown here is a dotted box that covers up anything that is under-
neath it. To demonstrate, a folded corner box is drawn first, and then the dashed
box is drawn second. They have to be done in this order. (The reason for the
notation y306P.tl is explained under diagram 2 on page 27).
99 z308=(0, y306P.tl+mup);

100 z309ml=z308c;

101 drawcardbox(308, pconl, 2onelineh, 1/4onelineh)(btex covered etex);

102 drawdashboxover(309, pconl, onelineh);

103

An oval box comes next. The perimeter is an ellipse.
104 z310bm=(x306bm,y309tm+mup);

105 drawovalbox(310, 2pconl, 2onelineh)("");

106

Now we have two rounded boxes. In the first one the corner radius is small
and the corners are neatly rounded. The radius is large in the second case, and it
is automatically reduced to give semicircular ends. Further, the center portion of
the second of these boxes is ‘deleted’ by putting a hiderectangle over it.

107 z311ml=(x310mr+mup, y310ml);

108 drawroundedbox(311, 2pconl, 2onelineh, 1/2onelineh)("rounded");

109

110 z312ml=(x311mr+mup, y311mr);

111 drawroundedbox(312, 2pconl, 2onelineh, 3/2onelineh)(btex large radius etex);

112

113 z314=(x312bm-1/4pconl, y312bm-1/2mup);

114 hiderectangle(314, 1/2pconl, (3/2onelineh + mup));

115

22

The last of the simple enclosed shapes are a dashed ellipse and a dashed circle,
which are aligned below the partially obscured rounded box.

116 z315tm=(x312bm, y312bm-mup);

117 drawdashellipse(315, 2pconl, 2onelineh);

118

119 z316tm=(x315bm, y315bm-mup);

120 drawdashcircle(316, diam);

121

A drum box is now presented. This is centered with respect to the rounded
box and aligned with the bottom of the triple box. It is the same nominal size as
the triple box.

122 z317bc=(x311bm,y304br);

123 drawdrum(317, pconl, 3onelineh)(btex drum etex);

To be a little different, I’ll add a ‘handle’ to the top of the drum. The top of the
handle will be above the drum at the point z317A, and the attachement points are
at the tml and tmr points on the drum. The normally sharp join in the middle of
the handle is smoothed off.

124 z317A=(x317tc, y317tc+2onelineh);

125 drawnormalthree(317tml, 317A, 317tmr);

126 smooth(317tml, 317A, 317tmr);

127

Below the drum box is a stick figure. It is centered with respect to the drum
box and based on the bottom row.

128 z320bm = (x317bm, y302);

129 drawstickman(320, onelineh, 2onelineh);

130

Above the drum box there is an output box, vertically aligned with the stick
figure, labelled ‘output’.

131 z325bm = (x320bm, y306);

132 drawoutputbox(325, pconl, 2onelineh)(btex output etex);

133

Above the output box there is a simple circled dot.
134 z330 = (x320bm, y309ml);

135 drawCircledDot(330, 3/2onelineh);

136

As in the bottom half, line styles are drawn on the right side of of the diagram.
First, though, there is an arrowed circle symbol. This is vertically aligned with
the centers of the lines.

137 z401bm=(1/2[x11,x111], y301+mup);

138 drawcircleA(401, diam);

139

Finish off with assorted linestyles.
140 z402=(xmid, y401tm+mup); z502=(x111, y402);

141 drawdashA(402, 502);

23

142

143 z403=(xmid, y402+mup); z503=(x111, y403);

144 drawdashOA(403, 503);

145

146 z404=(xmid, y403+mup); z504=(x111, y404);

147 drawnormalOD(404, 504);

148

149 z405=(xmid, y404+mup); z505=(x111, y405);

150 drawnormalCD(405, 505);

151

152 z406=(xmid, y405+mup); z506=(x111, y406);

153 drawnormalDCA(406, 506);

154

Lines can be drawn at any angle, and the non-circular line end styles remain
aligned.

A set of lines and endstyles are drawn rotating about the common start point
of the lines. pt1 rotatatedaround(pt2, ang) is MetaPost code that rotatesrotatedaround

the point pt1 around the point pt2 counterclockwise through the angle ang in
degrees.

155 numeric ang; ang = 180/7;

156 z600=(xmid, y406+2mup);

157 z699=(x600+len, y600);

158 z601=z699 rotatedaround(z600, ang);

159 z602=z699 rotatedaround(z600, 2ang);

160 z603=z699 rotatedaround(z600, 3ang);

161 z604=z699 rotatedaround(z600, 4ang);

162 z605=z699 rotatedaround(z600, 5ang);

163 z606=z699 rotatedaround(z600, 6ang);

164 z607=z699 rotatedaround(z600, 7ang);

165 drawnormalCA(600,601);

166 drawnormalOA(600,602);

167 drawnormalF(600,603);

168 drawdashA(600,604);

169 drawnormalOD(600,605);

170 drawnormalCD(600,606);

171

This is the end of the first diagram.
172 endfig; % end figure 1

173

3.2 Diagrams 2–5: EXPRESS-G like models

The diagrams in this section are all drawn using the express-g specific routines.
Nevertheless, they do illustrate general BLA techniques.

24

3.2.1 Diagram 2: Schema level diagram

In contrast to the first diagram, this one is much more like an express-g diagram.
It illustrates a diagram consisting of SCHEMA boxes and interconnections.

174 beginfig(2) % schema level model

175

First define some lengths to assist in laying out the diagram, which is going
to consists of three rows of boxes with varying numbers of boxes in each row; the
bottom row has two, the middle has four, and the top row has one. We also want
to align the boxes vertically in a ‘nice’ manner.

176 numeric lb, hb; % length & height of boxes

177 lb=20u; hb=schemah;

178 numeric upshift; % vertical distance between rows

179 upshift = 20u;

180 numeric sideshift; % horizontal distance between boxes

181 sideshift = 10u;

182

The bottom row has two boxes and the second four. The two bottom boxes
will be aligned vertically under the two middle boxes in the middle row. Allowance
must be made for a ‘missing’ box at the start of the bottom row. The second box
on the bottom row is spaced from the first one.

183 %%% bottom row

184

185 z9=(lb+sideshift,0);

186 drawSCHEMA(9, lb, hb)("nine");

187

188 z11=(x9br+sideshift,y9);

189 drawSCHEMA(11, lb, hb)("eleven");

190

The bottom of the boxes on the second row are all at a fixed distance above
the top of the boxes on the first row. We only need to specify the y coordinate of
the bottom of one box in the row, and use that for the remainder,

191 %%% middle row

192

193 z1=(0,y9tl+upshift);

194 drawSCHEMA(1, lb, hb)("one");

195

196 z3=(x1br+sideshift, y1);

197 drawSCHEMA(3, lb, hb)("three");

198

199 z5=(x3br+sideshift, y1);

200 drawSCHEMA(5, lb, hb)("five");

201

202 z7=(x5br+sideshift, y1);

203 drawSCHEMA(7, lb, hb)("seven");

204

25

The single box on the top row will be position centrally above the two middle
boxes of the middle row. Mediation is used to calculate the x coordinate that is
halfway between the right side of the left box and the left side of the right box.

205 %%% top row

206

207 x50 = 1/2[x3br,x5bl];

208 z31bm=(x50,y1tl+upshift);

209 drawSCHEMA(31, lb, hb)("thirtyone");

210

This completes the boxes. The diagram is finished off by drawing connections
between the boxes. The first set of connections are just straight lines between
known points on boxes.

211 %%% connectors

212

213 drawdashOO(9tm, 3bm); % three/nine

214 drawdashO(5bm, 11tm); % five/eleven

215 drawdashO(3ml, 1mr); % three/one

216 drawdashO(3mr, 5ml); % three/five

217 drawdashOO(9mr, 11ml); % nine/eleven

218

The next connection is more complex. It goes from schema thirtyone to schema
nine on a three-legged route. It goes horizontally left from thirtynine, then ver-
tically down, and finally horizontally right to nine. It also passes to the left of
schema one.

The route is constructed by specifying a point z90 to the left of schema nine,
and the point z31A on the left hand of schema thirtynine. The VH routine is then
called to generate the corner point on the (rotated) L shaped path between z90
and z31A. The connection is then drawn using these four points.

219 %%% thirtyone/nine

220 z90=((x1bl-sideshift), y9ml);

221 z31A=3/4[z31bl,z31tl];

222 VH(90, 31A);

223 drawdashO(90vh, 31A);

224 drawdashthreeO(90vh, 90, 9ml);

To demonstrate another aspect of MetaPost, a dot is drawn at the locationpickup

of z90. If the drawing pen is thick enough, just drawing one point is sufficient to
make a noticeable dot. The code pickup thickpen; drops the current pen and
picks up the thickpen for drawing. The code pickup normalpen; picks up the
normal pen, which is the one that is normally used.

The last line of code here is label.lft("z90", z90); which puts the textlabel

dotlabel ‘z90’ at the left of point z90. The label routine has two arguments, the first the
text and the second the point at or near which the text is to be placed. The
simplest form of the routine is label("text", zk) which centers the text over
the point zk. A suffix can be used after the label (e.g., .lft in the code below)
to modify the placement. .lft positions the text at the left of the point. The
other modifiers are: .rt, .top, .bot, .ulft, .urt, .llft and .lrt. There is

26

also a dotlabel.suffix("text", zk) routine which draws the point as well. For
complicated diagrams it can be useful to label some points during development,
and then comment them out for the final picture.

225 pickup thickpen;

226 draw z90;

227 pickup normalpen;

228 label.lft("z90", z90);

229

The next two connectors, between schemas one and eleven and between thir-
tyone and eleven are of a similar U shape. There is, though, one tricky point to
remember. Up till now, all point arguments to the expressg routines have been
of the form 3 or 4bm; that is, either a number or a number followed by letter(s).
For example, VH(3,4bm) will calculate the point z3vh. However, if a routine adds
more letters to an argument that already has letters, such as VH(4bm,3), the cal-
culated point is not z4bmvh as might be expected, but instead is z4bm.vh. This
has tripped me up on several occasions.

230 %%% one/eleven

231 z1A=1/3[z1bl,z1br];

232 z11A=(x11bm, (y11bm-sideshift));

233 VH(1A, 11A);

234 drawdashthree(1A, 1A.vh, 11A); % note it is 1A.vh and not 1Avh

235 drawdashO(11A, 11bm);

236 dotlabel.rt("z11A", z11A);

237 dotlabel.lft("z1A.vh", z1A.vh); % note it is z1A.vh and not z1Avh

238

The connector between thirtyone and eleven is the same general shape as the
thirtyone to nine connector. This time, I’ll use the HxH routine to calculate the
turning points

239 %%% thirtyone/eleven

240 z31B=3/4[z31br,z31tr];

241 x31BC=x7br+sideshift;

242 HxH(31B, 31BC, 11mr);

243 drawdashfourO(31B, 31B.hxh, 11mr.hxh, 11mr);

244

The next two connectors, between thirtyone and seven, and between thirtyone
and one, are simple L shapes, which are easier to produce than the U shaped ones.

245 %%% thirtyone/seven

246 z31D=1/4[z31br,z31tr];

247 VH(7tm, 31D);

248 drawnormalthreeO(31D, 7tm.vh, 7tm);

249

250 %%% thirtyone/one

251 z31C=1/4[z31bl,z31tl];

252 VH(1tm, 31C);

253 drawdashO(1tm.vh, 31C);

254 drawdashO(1tm.vh, 1tm);

255

27

The last two connectors are also simple, each consisting of vertical then hor-
izontal then vertical lines and the turning points can be calculated by the VhV
routine..

256 %%% thirtyone/three

257 z31E=1/4[z31bl,z31br];

258 VhV(31E, 3tm);

259 drawnormalfourO(31E, 31E.vhv, 3tm.vhv, 3tm);

260

261 %%% thirtyone/five

262 z31F=3/4[z31bl,z31br];

263 VhV(31F, 5tm);

264 drawnormalfourO(31F, 31F.vhv, 5tm.vhv, 5tm);

265

The last element in the diagram is a vertical closed arrowheaded line with
a label alongside. The arrowhead is on the top line of the connector between
thirtyone and eleven. Note the point mediation expression expression in the label
routine call.

266 %%% labeled arrow

267 z3111=1/4[z31B,z31B.hxh];

268 numeric arrowsize;

269 arrowsize := schemah;

270 z3112=(x3111, y3111+arrowsize);

271 drawnormalCA(3112, 3111);

272 label.rt(btex an_import etex, 1/2[z3111, z3112]);

273

The end of this diagram.
274 endfig; % end fig 2

275

3.2.2 Diagram 3: Tree structure

This diagram is the first of three that are related in style. It is useful at this point
to define some variables, and values for some of these as they will probably be
used in all three diagrams.

Values are assigned (e.g., var := val;) so that they can be changed later if
necessary (e.g., var := newval;). If values were equated like var = val; then
they cannot be changed afterwards3 as var = newval; will then have specified
two incompatible equations for var and MetaPostwill report a problem.

276

277 %%%% some commonly used variables & values

278

279 numeric pl, ph; % length & height of numeric page connectors

280 pl:=pconl; ph:=pconh; % for eg., 9,9 (9,9)

281 numeric plnamed; % length of named page connector

282 numeric irh; % height of interschema boxes

3Except by assignment.

28

283 irh:=ish; % normally one line of text

284 numeric sdtl, sdth; % length & height of SDT (e.g. INTEGER) boxes

285 sdtl:=sdtbl; sdth:=sdtbh;

286 numeric edtl, edth; % length & height of enum boxes (inset is sdtbs)

287 edth:=sdtbh; % normally one text line

288 numeric el, eh; % length & height of entity boxes

289 eh:=enth; % normally one text line

290 numeric upshift; % vertical space between rows of boxes

291 numeric nextup; % vertical space between bases of rows of boxes

Now another bit of MetaPost. There is another type of variable called a
picture variable. This can hold something as trivial as a dot or a text string,
up to a complete diagram. References to an Index type is a common element in
some of the diagrams. It is useful to create a shorthand for these by using picture
variables.

292 picture sindex, pindex;

293 sindex := btex eleven.Index etex; % interschema reference text

294 pindex := btex 9,9 Index etex; % page reference text

295 numeric slindex, plindex;

296 slindex := namespace(sindex)(nextra); % length of Index interschema

297 plindex := namespace(pindex)(nextra); % length of Index page reference

Yet more new MetaPost. Array variables are supported. These are declared
by giving the variable name immediately followed by a pair of square brackets. An
element of an array can be simply accessed by suffixing the variable name with the
integer number denoting the desired position. Actually we have been using array
variables all along, as z3 or x7 are elements of the arrays z[] and x[] respectively.
We define two arrays, one to be used for specifying horizontal spaces (lengths) and
the other for vertical (y) coordinates.

298 numeric hspace[]; % horizontal spaces

299 numeric lyc[]; % Y coords of box bases

300

301 %%%%%%%%%%% end commonly used variables & values

302

Diagram 3 consists of type boxes. We will make these all the same length and
height.

303 beginfig(3) % example fig 3

304 %%%drawgrid;

305

The space required for the longest name is edtl.
306 edtl := namespace(btex standard_data_name etex)(niextra);

There are several rows in the diagram. Specify the vertical space between the
rows, and the space between the bottoms of the boxes (the height of a box is the
normal height, sdth, for a type box). Also specify the y coordinates for each row,
counting from the bottom.

307 upshift=2sdth;

308 nextup=sdth+upshift;

29

309 %%% the y coords of box bases

310 lyc1:=0;

311 lyc2:=lyc1+nextup;

312 lyc3:=lyc2+nextup;

313 lyc4:=lyc3+nextup;

314 lyc5:=lyc4+nextup;

315 lyc6:=lyc5+nextup;

316 lyc7:=lyc6+nextup;

317 lyc8:=lyc7+nextup;

Specify two horizontal spaces.
318 hspace1 := 1/3edtl; % space between data enums

319 hspace2 := 2/3edtl; % initial space at start of second row

320

Draw the 3 boxes in the first row and the 3 in the second; these are staggered with
respect to each other and overlap as otherwise there there is not enough space to
get them all onto one page. I’ll use a numbering scheme for points so that zCR is
a point in the Cth column and the Rth row.

321 %%% bottom two rows (1 & 2)

322

323 z11=(0,lyc1);

324 drawENUM(11, edtl, edth)(btex coordinates etex);

325

326 z22=(hspace2, lyc2);

327 drawENUM(22, edtl, edth)(btex solution_data etex);

328

329 z31=(x11br+hspace1, lyc1);

330 drawENUM(31, edtl, edth)(btex pressure_loads etex);

331

332 z42=(x22br+hspace1, lyc2);

333 drawENUM(42, edtl, edth)(btex nondimensional etex);

334

335 z51=(x31br+hspace1, lyc1);

336 drawENUM(51, edtl, edth)(btex temperature etex);

337

338 z62=(x42br+hspace1, lyc2);

339 drawENUM(62, edtl, edth)(btex force_loads etex);

340

The third ‘row’ consists of a horizontal line stretching from the middle of the
leftmost box to the middle of the rightmost box. There are connections from this
line to the top middle of each of the boxes. We can use the VyV routine for the
end points of the line.

341 %%% third row (horizontal line between 2 & 4 row)

342

343 z13=(x11tm,lyc3);

344 VyV(11tm, 13, 62tm);

345 drawnormal(11tm.vyv, 62tm.vyv);

30

Calculate the points on this line vertically above the midpoints of the boxes
and draw the connections.

346 z23=(x22tm,lyc3); z33=(x31tm,lyc3); z43=(x42tm,lyc3); z53=(x51tm,lyc3);

347 drawnormalO(11tm.vyv,11tm);

348 drawnormalO(23,22tm);

349 drawnormalO(33,31tm);

350 drawnormalO(43,42tm);

351 drawnormalO(53,51tm);

352 drawnormalO(62tm.vyv,62tm);

353

The fourth row consists of three boxes. There is a vertical line from the bottom
of the leftmost box to the horizontal line drawn in row 4. The three boxes are
aligned horizontally with respect to this line.

354 %%% fourth row

355

356 z3224=1/3[z13,z62tm.vyv];

357 z3554=2/3[z13,z62tm.vyv];

358

359 %%% standard_data_name

360 z24bm=(x3224,lyc4);

361 drawSELECT(24, edtl, edth)(btex standard_data_name etex);

362 drawnormal(24bm,3224);

363

364 %%% adhoc_data_name

365 z54bm=(x3554,lyc4);

366 drawTYPE(54, edtl, edth)(btex adhoc_data_name etex);

367

368 %%% STRING

369 z64br=(x62br,lyc4);

370 drawSTRING(64);

371

The fifth ‘row’ consists of two vertical connectors to the tops of the SELECT
and TYPE boxes, with a horizontal line connecting the tops of the connectors.

372 %%% fifth row

373

374 z35=(1/2[x24tm,x54tm], lyc5);

375 VyV(24tm, 35, 54tm);

376 drawnormalthreeO(35, 24tm.vyv, 24tm);

377 drawnormalthreeO(35, 54tm.vyv, 54tm);

378

The top row consists of a SELECT box vertically aligned above the center of
the horizontal line from the 5th row, together with a line joining these two, and
also a page reference box off towards the right hand side

379 %%% sixth row

380

381 z36bm=(x35,lyc6);

382 drawSELECT(36,edtl, edth)(btex data_name etex);

31

383 drawnormal(36bm,35);

384

385 %%% data_name

386 z66=(x62,lyc6);

387 drawPREF(66, sdtl, ph)(btex 3,1 (4) etex);

388

The remaining elements on the diagram are: a connector on the 4th row from
adhoc data name to STRING; and a connector on the 6th row from the page
reference to data name.

389 %%%% rest of the connectors

390

391 %%% adhoc/STRING (54, 64)

392 drawnormalO(54mr,64ml);

393

394 %%% PREF/data_name (36, 66)

395 drawdashO(66ml,36mr);

396

The end of this diagram
397 endfig; % end fig 3

398

3.2.3 Diagram 4: Supertypes and subtypes

This diagram consists of a supertype entity and its four subtypes. The entities
have various attributes.

399

400 beginfig(4) % example 4

401 %%%drawgrid;

402

Define some useful lengths.
403 %%% length of named page reference boxes

404 plnamed := namespace(btex 9,9 data_name etex)(nextra);

405

406 %%% length of entity boxes

407 el := namespace(btex (ABS) Data_t etex)(nextra);

408

409 upshift := 2sdth; % vertical space between boxes

410 nextup := sdth+upshift; % vertical space between bases of boxes

411 hspace1 := 1/2el; % space between entity boxes

412

413 %%% the y coords of box bases

414 lyc1:=0;

415 lyc2:=lyc1+nextup;

416 lyc3:=lyc2+nextup;

417 lyc4:=lyc3+nextup;

418 lyc5:=lyc4+nextup;

419 lyc6:=lyc5+nextup;

32

420 lyc7:=lyc6+nextup;

421 lyc8:=lyc7+nextup;

422

We’ll start with the second row which consists of 4 entity (subtype) boxes. The
numbering scheme for point suffixes is zCR, where C is the column number and R
is the row number.

423 %%%% 2nd row

424

425 %%% IntArray

426 z12=(0,lyc2);

427 drawENT(12, el, eh)(btex IntArray etex);

428

429 %%% RealArray

430 z22=(x12br+hspace1, lyc2);

431 drawENT(22, el, eh)(btex RealArray etex);

432

433 %%% CharArray

434 z42=(x22br+hspace1, lyc2);

435 drawENT(42, el, eh)(btex CharArray etex);

436

437 %%% BitArray

438 z52=(x42br+hspace1, lyc2);

439 drawENT(52, el, eh)(btex BitArray etex);

440

The first row is four simple data type boxes, aligned underneath the entity
boxes.

441 %%%% 1st row

442

443 z11bm=(x12bm,lyc1);

444 drawINTEGER(11);

445

446 z21bm=(x22bm,lyc1);

447 drawREAL(21);

448

449 z41bm=(x42bm,lyc1);

450 drawSTRING(41);

451

452 z51bm=(x52bm,lyc1);

453 drawBINARY(51);

454

The third ‘row’ is the thick lines connecting the subtype boxes.
455 %%% 3rd row

456

457 y13= y23= y43= y53=lyc3;

458 x13=x12tm; x23=x22tm; x43=x42tm; x53=x52tm;

459 drawthick(13,53); % horizontal line

460 %%% vertical connectors

461 drawthickO(13,12tm); drawthickO(23,22tm);

33

462 drawthickO(43, 42tm); drawthickO(53, 52tm);

463

464 z33=1/2[z13,z53]; % midpoint of horizontal line

465

The 4th row is an abstract supertype entity box, which is made 3 times taller
than the default entity box height. The entity box is centered with respect to
the row of subtype boxes and is connected to the subtype boxes connector. The
digit 1 is placed near the connection point. There is also a page reference and an
INTEGER box at the left and right (as attributes of the supertype).

466 %%% 4th row

467

468 %%% Data_t

469 z34bm=(x33,lyc4);

470 drawENT(34, el, 3eh)(btex \twolines{(ABS)}{Data_t} etex);

471 drawthick(34bm,33);

472 label.urt("1", z33); % label the connection point

473

474 %%% Index

475 z14=(0,lyc4);

476 drawPREF(14, plindex, ph)(pindex);

477

478 %%% INTEGER

479 z54br=(x51br,lyc4);

480 drawINTEGER(54);

481

The 5th row has page reference boxes at the left and right (as attributes of the
supertype).

482 %%% 5th row

483

484 lyc5:=y34tm-ph; % change the initial y coord value

485

486 %%% Index

487 z15=(0,lyc5);

488 drawPREF(15, plindex, ph)(pindex);

489

490 %%% DataType

491 z55=(x54,lyc5);

492 drawPREF(55, plnamed, ph)(btex 3,1 data_name etex);

493

The 6th, and last, row, just consists of a page reference centered above the
supertype box.

494 %%% 6th row

495

496 %%% PREF to Data_t

497 lyc6:=lyc5+nextup;

498 z36bm=(x34tm,lyc6);

499 drawPREF(36, pl, ph)(btex 7,5 (6) etex);

500

34

The rest of the diagram consists of the labelled attribute lines.
501 %%%% attributes

502

503 %%% Sizes Data_t/Index (34, 14)

504 z3414=(x34,y14mr);

505 drawnormal(3414,14mr);

506 label.ulft(btex Sizes A[1:Limit] etex, z3414);

507

508 %%% num Data_t/INTEGER (34, 54)

509 z3454=(x34mr,y54ml);

510 drawnormalO(3454,54ml);

511 label.urt(btex (DER) num etex, z3454);

512

513 %%% Limit Data_t/Index (34, 15)

514 z3415=(x34,y15mr);

515 drawnormal(3415,15mr);

516 label.ulft(btex Limit etex, z3415);

517

518 %%% Kind Data_t/data_name (34, 55)

519 z3455=(x34mr, y55ml);

520 drawnormal(3455, 55ml);

521 label.urt(btex Kind etex, z3455);

522

523 %%% PREF into Data_t (36, 34)

524 drawdashO(36bm, 34tm);

525

526 %%% Data IntArray/INTEGER (12, 11)

527 drawnormalO(12bm, 11tm);

528 label.lrt(btex Data A[1:num] etex, z12bm);

529

530 %%% Data RealArray/REAL (22, 21)

531 drawnormalO(22bm, 21tm);

532 label.lrt(btex Data A[1:num] etex, z22bm);

533

534 %%% Data CharArray/STRING (42, 41)

535 drawnormalO(42bm, 41tm);

536 label.lrt(btex Data A[1:num] etex, z42bm);

537

538 %%% Data BitArray/BINARY (52, 51)

539 drawnormalO(52bm, 51tm);

540 label.lrt(btex Data A[1:num] etex, z52bm);

541

The end of this diagram.
542 endfig; % end fig 4

543

35

3.2.4 Diagram 5: Portion of larger model

This diagram is more complex than the previous ones. It is, nevertheless, presented
with virtually no commentary. It consists of three entity boxes and various page
reference and interschema boxes to support the entities’ attributes.

544 beginfig(5) % example 5

545 %%drawgrid;

546

As usual, specify commonly used variables and values.
547 plnamed := namespace(btex 7,4 Unstructured_Donor etex)(nextra);

548

549 numeric irls, irll; % length of short and long ISR boxes

550 irls = namespace(btex eleven.MeshLocation etex)(nextra);

551 irll = namespace(btex eleven.MeshConnectivityType etex)(nextra);

552

553 upshift := irh;

554 nextup := irh+upshift;

555

556 numeric maxrx; % max x coordinate value of LH of right column boxes

557 maxrx := maxx-irrl;

558 numeric xmid; % x coord of figure center

559 xmid := 1/2[irls, maxx-irll];

560

561 el := namespace(btex MeshConnectivity1_1 etex)(nextra);

562 eh := irh;

563

564 %%% y coords

565 lyc1 := 0;

566 lyc2 := lyc1+nextup;

567 lyc3 := lyc2+nextup;

568 lyc4 := lyc3+nextup+irh;

569 lyc5 := lyc4+nextup;

570 lyc6 := lyc5+nextup;

571 lyc7 := lyc6+nextup;

572 lyc8 := lyc7+nextup;

573 lyc9 := lyc8+nextup;

574

Rows one and two have one centered box each.
575 %%% Zcol/row

576 %%% row 1

577

578 %%% PREF for Overlapping

579 z21bm=(xmid,lyc1);

580 drawPREF(21, pl, ph)(btex 5,3 (8) etex)

581

582 %%% row 2

583

584 %%% OverlappingArea

36

585 z22bm=(x21bm,lyc2);

586 drawENT(22, el, eh)(btex OverlappingArea etex);

587

Row three has three boxes, and the middle one is centered.
588 %%% row 3

589

590 %%% IndexArray

591 z13=(pl,lyc3);

592 drawISR(13, irls, irh)(btex eleven.IndexArray etex);

593

594 %%% Index

595 z23bm=(x22bm,lyc3);

596 drawISR(23, slindex, irh)(sindex);

597

598 %%% MeshLocation

599 z33br=(maxx,lyc3);

600 drawISR(33, irls, irh)(btex eleven.MeshLocation etex);

601

Row four has three boxes, and the middle one is centered.
602 %%% row 4

603

604 %%% MeshConnectivity

605 z24bm=(x23bm,lyc4);

606 drawENT(24, el, eh)(btex MeshConnectivity etex);

607

608 %%% PREF for MeshConnectivity

609 z14ml=(pl,y24ml);

610 drawPREF(14, pl, ph)(btex 5,2 (8) etex);

611

612 %%% Structured_Donor

613 z34br=(maxx,lyc4);

614 drawPREF(34, plnamed, ph)(btex 7,5 Structured_Donor etex);

615

Rows five and six have one box each, at the right hand side.
616 %%% row 5

617

618 %%% Unstructured_donor

619 z35br=(maxx,lyc5);

620 drawPREF(35, plnamed, ph)(btex 7,4 Unstructured_Donor etex);

621

622 %%% row 6

623

624 %%% MeshConnType

625 z36br=(maxx,lyc6);

626 drawISR(36, irll, irh)(btex eleven.MeshConnectivityType etex);

627

Row seven has three boxes, and the middle one is centered.

37

628 %%% row 7

629

630 %%% IndexRange

631 z17=(0,lyc7);

632 drawISR(17, irls, irh)(btex eleven.IndexRange etex);

633

634 %%% INTEGER

635 x27bm=x24bm; y27ml=y17mr;

636 drawINTEGER(27);

637

638 %%% Zone

639 z37br=(maxx,lyc7);

640 drawISR(37, irls, irh)(btex seven.Zone etex);

641

Rows eight and nine have one centered box each.
642 %%% row 8

643

644 %%% 1to1

645 z28bm=(x24bm,lyc8);

646 drawENT(28, el, eh)(btex MeshConnectivity1_1 etex);

647

648 %%% row 9

649

650 %%% PREF to 1to1

651 z29bm=(x28bm,lyc9);

652 drawPREF(29, pl, ph)(btex 5,1 (8) etex);

653

All the boxes have been drawn. The remainder is adding and labelling attribute
lines. First page references to subtype entities.

654 %%%% attributes, etc

655

656 drawthickO(21tm,22bm); % PREF to Overlap (21, 22)

657 drawthickO(14mr,24ml); % PREF to MeshConn (14, 24)

658 drawthickO(29bm,28tm); % PREF to 1to1 (29, 28)

659

The attributes of entity OverlappingArea (z22)
660 %%% PointListSize (22, 23)

661 drawdashO(22tm,23bm);

662 label.llft(btex PointListSize etex, z23bm);

663

664 %%% PointRange (22, 17)

665 z22A=1/4[z22bl,z22tl]; z17A=(1/2[0,x13], y17);

666 VH(17A,22A);

667 drawdashthreeO(22A, 17A.vh, 17A);

668 label.ulft(btex PointRange etex, z22A);

669

670 %%% PointList (22, 13)

671 z22B=3/4[z22bl,z22tl];

38

672 VH(13bm,22B);

673 drawdashthreeO(22B, 13bm.vh, 13bm);

674 label.ulft(btex PointList etex, z22B);

675

676 %%% MeshLocation (22, 33)

677 z22C=1/4[z22br,z22tr];

678 z33B=2/3[z33bl,z33br];

679 VH(33B,22C);

680 drawnormalthreeO(22C, 33B.vh, 33B);

681 label.urt(btex (DER) Location etex, z22C);

682

683 %%% Meshloc (22, 33)

684 z22D=3/4[z22br,z22tr];

685 z33A=1/3[z33bl,z33br];

686 VH(33A,22D);

687 drawdashthreeO(22D, 33A.vh, 33A);

688 label.urt(btex Meshloc etex, z22D);

689

The attributes of entity MeshConnectivity (z24).
690 %%% PointListSize (24, 23)

691 drawnormalO(24bm, 23tm);

692 label.ulft(btex PointListSize etex, z23tm);

693

694 %%% StructuredDonor (24, 34)

695 z24A=(x24br,y34ml);

696 draw z24A--z34ml dashes;

697 label.lrt(btex StructuredDonor etex, z24A);

698

699 %%% UnstructuredDonor (24, 35)

700 z24B=3/4[z24br,z24tr];

701 HvH(24B,35ml);

702 drawdashfourO(24B, 24B.hvh, 35ml.hvh, 35ml);

703 label.urt(btex UnstructuredDonor etex, z24B.hvh);

704

705 %%% Meshloc (24, 33)

706 z24C=4/6[z24bl,z24br];

707 z33C=(x33A,y33tm);

708 y2433C=1/3[y33C,y24C];

709 VyV(24C, 2433C, 33C);

710 drawdashfourO(24C, 24C.vyv, 33C.vyv, 33C);

711 label.lrt(btex Meshloc etex, z24C.vyv);

712

713 %%% Location (24, 33)

714 z24D=5/6[z24bl,z24br];

715 z33D=(x33B,y33tm);

716 y2433D=2/3[y33D,y24D];

717 VyV(24D, 2433D, 33D);

718 drawnormalfourO(24D, 24D.vyv, 33D.vyv, 33D);

719 label.lrt(btex (DER) Location etex, z24D.vyv);

39

720

721 %%% ConnectivityType (24, 36)

722 z24H=(x24D,y24tr);

723 z36H=z36bm;

724 y2436H=1/2[y35tr,y36br];

725 VyV(24H, 2436H, 36H);

726 drawnormalfourO(24H, 24H.vyv, 36H.vyv, 36H);

727 label.urt(btex (DER) ConnectivityType etex, z24H.vyv);

728

729 %%% Meshcon (24, 36)

730 z24G=(x24C,y24tr);

731 z36G=z36ml;

732 VH(24G,36G);

733 drawdashthreeO(24G, 24G.vh, 36G);

734 label.urt(btex Meshcon etex, z24G.vh);

735

736 %%% K (24, 27)

737 drawnormalO(24tm, 27bm);

738 label.ulft(btex K etex, z24tm);

739

740 %%% PointRange (24, 17)

741 z24E=1/4[z24tl,z24tr];

742 x17br-x17E = x17A-x17bl;

743 y17E = y17A;

744 VhV(24E,17E);

745 drawdashfourO(24E, 24E.vhv, 17E.vhv, 17E);

746 label.ulft(btex PointRange etex, z24E);

747

748 %%% PointList (24, 13)

749 z24F=1/4[z24bl,z24br];

750 z13F=1/2[z13tl,z13tr];

751 VhV(24F,13F);

752 drawnormalfourO(24F, 24F.vhv, 13F.vhv, 13F);

753 label.llft(btex PointList etex, z24F);

754

The attributes of entity MeshConnectivity1 1 (z28)
755 %%% N (28, 27)

756 z27A=1/5[z27tl,z27tr];

757 z28A=(x27A,y28bl);

758 drawnormalO(28A,27A);

759 label.llft(btex N etex, z28A);

760

761 %%% trans (28, 27)

762 z27B=1/2[z27tl,z27tr];

763 z28B=(x27B,y28bl);

764 drawdashO(28B,27B);

765 label.lrt(btex \twolines{trans}{A[1:N]} etex, z28B);

766

767 %%% Transform (28, 27)

40

768 z27C=1/2[z27br,z27tr];

769 z28C=(1/2[x27C,x28br], y28br);

770 VH(28C,27C);

771 drawnormalthreeO(28C,28C.vh,27C);

772 label.lrt(btex (DER) Transform A[1:N] etex , z28C);

773

774 %%% DonorZone (28, 37)

775 z28D=1/2[z28br,z28tr];

776 z37D=z37tm;

777 VH(37D,28D);

778 drawdashthreeO(28D,37D.vh,37D);

779 label.urt(btex DonorZone etex, z28D);

780

781 %%% DonorPointRange (28, 17)

782 z28G=3/4[z28bl,z28tl];

783 z17G=(x17A,y17tl);

784 VH(17G,28G);

785 drawnormalthreeO(28G,17G.vh,17G);

786 label.ulft(btex DonorPointRange etex, z28G);

787

788 %%% PointRange (28, 17)

789 z28H=1/4[z28bl,z28tl];

790 z17H=(x17E,y17G);

791 VH(17H,28H);

792 drawnormalthreeO(28H,17H.vh,17H);

793 label.ulft(btex PointRange etex, z28H);

794

The end of this diagram.
795 endfig; % end fig 5

796

3.3 Diagrams 6–11: Car model

The diagrams in this section are all taken from [SW94, Chapter 2]. A simple
information/data model of a car, car model, and car manufacturer is presented in
a variety of BLA languages, among which is, of course, express-g. In words, the
model is:

A car is made by a manufacturer. Each manufacturer has a unique
name. A manufacturer constructs cars in several models and a car is
of a particular model. A manufacturer gives a serial number to each
car he produces and this is unique across all cars produced by that
manufacturer. Each model also has a name, and this is unique across
all models. A car has a year of production.

This model is a small portion of a conceptual model developed as a common
specification for comparing modeling languages [ISO87].

The purpose of these diagrams is to illustrate how the expressg package sup-
ports a range of graphical languages.

41

3.3.1 Diagram 6: express-g

Having already seen several examples of express-g diagrams, this one is presented
with no further comments.

797

798 beginfig(6) % example 6 EXPRESS-G

799 %%%drawgrid;

800

801 upshift := 3/2onelineh;

802 nextup := onelineh+upshift;

803

804 el := namespace(btex manufacturer etex)(nextra);

805 eh := onelineh;

806

807 hspace1 := 1/2el;

808

809 %%% y coords

810 lyc1 := 0;

811 lyc2 := lyc1+nextup;

812 lyc3 := lyc2+nextup;

813 lyc4 := lyc3+nextup;

814 lyc5 := lyc4+nextup;

815

816 %%% Zcol/row

817

818 %%% rows 4 and 5

819 z14=(0,lyc4);

820 drawENT(14, el, eh)(btex manufacturer etex);

821

822 z25=(x14br+hspace1, lyc5);

823 drawSTRING(25);

824

825 z34=(x25br+hspace1, lyc4);

826 drawENT(34, el, eh)(btex car_model etex);

827

828 %%% row 3

829

830 z33bm=(x34bm, lyc3);

831 drawENT(33, el, eh)(btex car etex);

832

833 %%% row 2

834

835 z22=(x25, lyc2);

836 drawINTEGER(22);

837

838 %%% row 1

839

840 z21=(x22, lyc1);

841 drawSTRING(21);

842

42

843 %%% attributes

844

845 %%% manufacturer name (14, 25)

846 VH(14tm, 25ml);

847 drawnormalthreeO(14tm, 14tm.vh, 25ml);

848 label.urt(btex *name etex, z14tm.vh);

849

850 %%% model name (34, 25)

851 VH(34tm, 25mr);

852 drawnormalthreeO(34tm, 34tm.vh, 25mr);

853 label.ulft(btex *name etex, z34tm.vh);

854

855 %%% made_by (34, 14)

856 drawnormalO(34ml, 14mr);

857 label.ulft(btex made_by etex, z34ml);

858

859 %%% model_type (33, 34)

860 drawnormalO(33tm, 34bm);

861 label.urt(btex model_type etex, z33tm);

862

863 %%% DER made_by (33, 14)

864 VH(14bm, 33ml);

865 drawnormalthreeO(33ml, 14bm.vh, 14bm);

866 label.ulft(btex (DER) *made_by etex, z33ml);

867

868 %%% year (33, 22)

869 z33A=1/3[z33bl, z33br];

870 VH(33A, 22mr);

871 drawnormalthreeO(33A, 33A.vh, 22mr);

872 label.ulft(btex year etex, z33A.vh);

873

874 %%% serial_no

875 z33B=2/3[z33bl, z33br];

876 VH(33B, 21mr);

877 drawnormalthreeO(33B, 33B.vh, 21mr);

878 label.ulft(btex *serial_no etex, z33B.vh);

879

The end of this diagram
880 endfig; % end fig 6

881

3.3.2 Diagram 7: Shlaer-Mellor

The Shlaer-Mellor graphical language [SM88] is fairly simple, consisting basically
of rectangles and arrowheaded lines. However, unlike express-g each box usually
has several lines of text. These are placed individually at the desired positions
within each box.

Notice below that I have used drawENT with an empty string to draw the
rectangular boxes; the routines for express-g diagrams can, if suitable, be used

43

in any sort of diagram.

882

883 beginfig(7) % example 7

884 %%%drawgrid;

885

886 el := namespace(btex MANUFACTURER etex)(niextra);

887 eh := onelineh;

888

889 hspace1 := namespace(btex made by maker of etex)(4ndextra);

890

891 hspace2 := 6onelineh; % height of CAR

892 hspace3 := 5onelineh; % space between rows

893 hspace4 := 3onelineh; % height of MANUFACTURER

894

895 %%% y coords

896 lyc1 := 0;

897 lyc2 := lyc1+hspace2+hspace3;

898

899 %%% Zcol/row

900

901 %%% row 2

902

903 z12=(0, lyc2);

904 drawENT(12, el, hspace4)("");

905 x121=x12+sdtbs;

906 label.rt(btex MANUFACTURER etex, (x121, 2/3[y12bl, y12tl]));

907 label.rt(btex * manuf-name etex, (x121, 1/3[y12bl, y12tl]));

908

909 z22=(x12br+hspace1, lyc2);

910 drawENT(22, el, hspace4)("");

911 x221=x22+sdtbs;

912 label.rt(btex CAR-MODEL etex, (x221, 2/3[y12bl, y12tl]));

913 label.rt(btex * model-name etex, (x221, 1/3[y12bl, y12tl]));

914

915 %%% row 1

916

917 z21=(x22, lyc1);

918 drawENT(21, el, hspace2)("");

919 x211=x21+sdtbs;

920 label.rt(btex CAR etex, (x211, 5/6[y21bl, y21tl]));

921 label.rt(btex o year etex, (x211, 4/6[y21bl, y21tl]));

922 label.rt(btex o model (R) etex, (x211, 3/6[y21bl, y21tl]));

923 label.rt(btex * serial-no etex, (x211, 2/6[y21bl, y21tl]));

924 label.rt(btex * maker (R) etex, (x211, 1/6[y21bl, y21tl]));

925

926 %%%%% relationship lines

927

In this diagram the labels on the relationship lines tend to bump into the line
ending symbol. MetaPost ignores initial and final spaces within btex...etex.

44

The paired braces below, each enclosing one space, supply non-discarded spaces.
(These could also have been written as \space).

928 %%% MANUFACTURER / CAR-MODEL (12, 22)

929 drawnormalDCA(12mr, 22ml);

930 drawnormalCA(22ml, 12mr);

931 label.urt(btex { }{ }made by etex, z12mr);

932 label.llft(btex maker of{ }{ } etex, z22ml);

933

934 %%% MANUFACTURER / CAR (12, 21)

935 VH(12bm, 21ml);

936 drawnormalCA(12bm.vh, 12bm);

937 drawnormalDCA(12bm.vh, 21ml);

938 label.llft(btex { }{ }made by etex, z12bm);

939 label.ulft(btex maker of{ }{ } etex, z21ml);

940

941 %%% CAR-MODEL / CAR (22, 21)

942 drawnormalDCA(22bm, 21tm);

943 drawnormalCA(21tm, 22bm);

944 label.lrt(btex { }one of etex, z22bm);

945 label.ulft(btex type of{ } etex, z21tm);

946

The end of this diagram
947 endfig; % end fig 7

948

3.3.3 Diagram 8: IDEF1X

IDEF1X is a popular language in America for representing the structure of
relational databases, and was developed under the auspices of the US Air
Force [IDE85].

The general layout of the diagram mimics the previous one. All the boxes are
divided horizontally into an upper and lower part. The drawdoublerectangle is
used for the rectangular boxes, but the dividing line in the rounded box has to be
added by hand, as it were.

949

950 beginfig(8) % example 8 IDEF1X

951 %%%drawgrid;

952

953 el := namespace(btex MANUFACTURER etex)(niextra);

954 eh := onelineh;

955

956 hspace1 := namespace(btex made by maker of etex)(4ndextra);

957

958 hspace2 := 5onelineh; % height of CAR

959 hspace3 := 5onelineh; % space between rows

960 hspace4 := 3onelineh; % height of MANUFACTURER

961

962 %%% y coords

45

963 lyc1 := 0;

964 lyc2 := lyc1+hspace2+hspace3;

965

966 %%% Zcol/row

967

968 %%% row 2

969

970 z12=(0, lyc2);

971 drawdoublerectangle(12, el, hspace4, 1/2);

972 label.urt(btex Manufacturer etex, z12tl);

973 x121=x12+sdtbs;

974 label.rt(btex manuf-name etex, (x121, 3/4[y12bl, y12tl]));

975

976 z22=(x12br+hspace1, lyc2);

977 drawdoublerectangle(22, el, hspace4, 1/2);

978 label.urt(btex Car-model etex, z22tl);

979 x221=x22+sdtbs;

980 label.rt(btex Model-name etex, (x221, 3/4[y12bl, y12tl]));

981 label.rt(btex Manuf-name (FK) etex, (x221, 1/4[y12bl, y12tl]));

982

983 %%% row 1

984

985 z21=(x22, lyc1);

986 drawroundedbox(21, el, hspace2, 2sdtbs)("");

987 label.urt(btex Car etex, z21tl);

988 draw z21ml--z21mr;

989 x211=x21+sdtbs;

990 label.rt(btex Serial-no etex, (x211, 5/6[y21bl, y21tl]));

991 label.rt(btex Manuf-name (FK) etex, (x211, 4/6[y21bl, y21tl]));

992 label.rt(btex Model-name (FK) etex, (x211, 2/6[y21bl, y21tl]));

993 label.rt(btex Year etex, (x211, 1/6[y21bl, y21tl]));

994

995 %%%%% relationship lines

996

997 %%% MANUFACTURER / CAR-MODEL (12, 22)

998 drawnormalD(12mr, 22ml);

999 label.top(btex of etex, 1/2[z12mr, z22ml]);

1000

1001 %%% MANUFACTURER / CAR (12, 21)

1002 VH(12bm, 21ml);

1003 drawnormalthreeD(12bm, 12bm.vh, 21ml);

1004 label.top(btex makes etex, 1/2[z12bm.vh, z21ml]);

1005 label.ulft(btex P{ } etex, z21ml);

1006

1007 %%% CAR-MODEL / CAR (22, 21)

1008 drawnormalD(22bm, 21tm);

1009 label.lft(btex of etex, 1/2[z21tm,z22bm]);

1010 label.urt(btex { }P etex, z21tm);

1011

46

The end of this diagram
1012 endfig; % end fig 8

1013

3.3.4 Diagram 9: OMT

OMT [RBP+91] was the precursor to the currently popular UML structure mod-
eling language. If you are curious as to why I believe that lexical languages are
in general better than BLA languages, the chapter on developing a compiler for
OMT highlights, probably unintentionally, some of the disadvantages of BLAs.

The general look of the OMT diagram is almost identical to the IDEF1X
diagram.

1014

1015 beginfig(9) % example 9 OMT

1016 %%%drawgrid;

1017

1018 el := namespace(btex {\bf MANUFACTURER} etex)(niextra);

1019 eh := onelineh;

1020

1021 hspace1 := namespace(btex made by maker of etex)(4ndextra);

1022

1023 hspace2 := 4onelineh; % height of CAR

1024 hspace3 := 4onelineh; % space between rows

1025 hspace4 := 3onelineh; % height of MANUFACTURER

1026

1027 %%% y coords

1028 lyc1 := 0;

1029 lyc2 := lyc1+hspace2+hspace3;

1030

1031 %%% Zcol/row

1032

1033 %%% row 2

1034

1035 z12=(0, lyc2);

1036 drawdoublerectangle(12, el, hspace4, 1/2);

1037 x121=x12+sdtbs;

1038 label.rt(btex {\bf Manufacturer} etex, (x121, 3/4[y12bl, y12tl]));

1039 label.rt(btex name : String etex, (x121, 1/4[y12bl, y12tl]));

1040

1041 z22=(x12br+hspace1, lyc2);

1042 drawdoublerectangle(22, el, hspace4, 1/2);

1043 x221=x22+sdtbs;

1044 label.rt(btex {\bf Car Model} etex, (x221, 3/4[y22bl, y22tl]));

1045 label.rt(btex name: String etex, (x221, 1/4[y22bl, y22tl]));

1046

1047 %%% row 1

1048

1049 z21=(x22, lyc1);

1050 drawdoublerectangle(21, el, hspace2, 1/3);

47

1051 x211=x21+sdtbs;

1052 label.rt(btex {\bf Car} etex, (x211, 5/6[y21bl, y21tl]));

1053 label.rt(btex serial-no : String etex, (x211, 4/9[y21bl, y21tl]));

1054 label.rt(btex year : Integer etex, (x211, 2/9[y21bl, y21tl]));

1055

1056 %%%%% relationship lines

1057

1058 %%% MANUFACTURER / CAR-MODEL (12, 22)

1059 drawnormalD(12mr, 22ml);

1060 label.top(btex {\it makes} etex, 1/2[z12mr, z22ml]);

1061 label.ulft(btex 1+{ } etex, z22ml);

1062

1063 %%% MANUFACTURER / CAR (12, 21)

1064 VH(12bm, 21ml);

1065 drawnormalthreeD(12bm, 12bm.vh, 21ml);

1066 label.top(btex {\it makes} etex, 1/2[z12bm.vh, z21ml]);

1067 label.ulft(btex 1+{ } etex, z21ml);

1068

1069 %%% CAR-MODEL / CAR (22, 21)

1070 drawnormalD(22bm, 21tm);

1071 label.lft(btex {\it produced as} etex, 1/2[z21tm,z22bm]);

1072

The end of this diagram
1073 endfig; % end fig 9

1074

3.3.5 Diagram 10: E-R

There are several flavours of Entity-Relationship modeling icons. I have used a
style from [EN89].

This example introduces some new icons and MetaPost modeling.

1075

1076 beginfig(10) % example 10 E-R

1077 %%%drawgrid;

1078

1079 numeric diam; diam := 2onelineh;

1080

1081 upshift := diam; % circle diameter

1082 nextup := diam+upshift;

1083

1084 el := namespace(btex MANUFACTURER etex)(niextra);

1085 eh := onelineh;

1086

1087 numeric dl, dh; % length and height of diamond boxes

1088 dl := 1/2el; dh := 2eh;

1089

1090 numeric marg; marg := 4u; % double the seperation between parallel lines

1091

48

1092 hspace1 := 1/2el;

1093

1094 %%% y coords

1095 lyc1 := 0;

1096 lyc2 := lyc1+nextup;

1097 lyc3 := lyc2+nextup;

1098 lyc4 := lyc3+nextup;

1099 lyc5 := lyc4+nextup;

1100

The diagram has 5 rows. Start with the 4th as it is the widest row.
1101 %%% Zcol/row

1102 %%% row 4

1103

1104 z14=(0,lyc4);

1105 drawENT(14, el, eh)(btex manufacturer etex);

1106

1107 z34ml=(x14br+hspace1, y14mr);

1108 drawdiamondbox(34, dl, dh)(btex has etex);

1109

1110 z54ml=(x34mr+hspace1, y34mr);

1111 drawENT(54, el, eh)(btex car_model etex);

1112

1113 %%% row 5

1114

1115 z15bm=(x14bm, lyc5);

1116 drawcirclebox(15, diam)(btex Name etex);

1117

1118 z55bm=(x54bm, lyc5);

1119 drawcirclebox(55, diam)(btex Name etex);

1120

The third row consists of an ordinary diamond box at the right and a doubly
enclosed diamond on the left. The drawtwodiamondbox routine is used for the
latter. Note that values of marg are used to make the oustside of the double
diamond larger than the single diamonds.

1121 %%% row 3

1122

1123 z53bm=(x54bm, lyc3);

1124 drawdiamondbox(53, dl, dh)(btex of etex);

1125

1126 z13c=(x14bm, y53c);

1127 drawtwodiamondbox(13, dl+marg, dh+marg, 2/5marg)(btex Makes etex);

1128

The second row just consists of a doubly enclosed rectangular box. There is
no explicit routine for drawing this, so two drawENT routines are used for drawing
smaller and larger superimposed boxes (one with an empty text argument).

1129 %%% row 2

1130

49

1131 z32bm=(x34bm, lyc2);

1132 drawENT(32, el, eh)(btex car etex);

1133 z31c=z32c;

1134 drawENT(31, el+marg, eh+marg)("");

1135

1136 %%% row 1

1137

1138 z21bm=(x32bl, lyc1);

1139 drawcirclebox(21, 5/4diam)(btex \twolines{Serial}{No} etex);

1140

1141 z41bm=(x32br, lyc1);

1142 drawcirclebox(41, diam)(btex Year etex);

1143

1144 %%%%%% lines

1145

1146 %%% Name / manufacturer (15, 14)

1147 drawnormal(15bm, 14tm);

1148

1149 %%% Name / model (55, 54)

1150 drawnormal(55bm, 54tm);

1151

1152 %%% Mnf / has (14, 34)

1153 drawnormal(14mr, 34ml);

1154 label.top(btex 1 etex, 1/2[z14mr,z34ml]);

1155

1156 %%% has/ model (34, 54)

1157 drawnormal(34mr, 54ml);

1158 label.top(btex N etex, 1/2[z34mr,z54ml]);

1159

1160 %%% Mnf / makes (14, 13)

1161 drawnormal(14bm, 13tm);

1162 label.rt(btex 1 etex, 1/2[z14bm,z13tm]);

1163

1164 %%% model / of (54, 53)

1165 drawnormal(54bm, 53tm);

1166 label.rt(btex 1 etex, 1/2[z54bm,z53tm]);

1167

In the diagrams so far, except trivially in the first, the lines have all been vertical
and/or horizontal. Now we meet lines in arbitrary directions, and parallel to boot.

A pair of parallel lines joins the bottom of the doubly enclosed diamond to the
left side of the doubly enclosed rectangle. Drawing one of these is simple — just
draw a straight line between the bottom middle of the diamond to the middle left
of the rectangle.

1168 %%% makes / car (13, 31)

1169 drawnormal(13bm, 31ml);

The point z31A is 1/2marg above the point z31ml. This is one end of the
parallel line.

1170 z31A=(x31ml, y31ml+1/2marg);

50

The MetaPost equation z1-z2 = frac*(z3-z4) means that (a) the line
z1--z2 is parallel to the line z3--z4, and (b) the length of the line z1--z2 is
frac of the length of z3--z4. We next specify that the line z13U--z31A is parallel
to, and the same length as, the line z13bm--z31ml;

1171 z13U-z31A = z13bm-z31ml;

The final part of the calculation is to determine the point z13A so that the line
z31A--z13A is parallel to our first line and starts and ends at the outer perimeters
of the boxes (and we already know what z31A is).

Remember mediation? A point, z1234 is on the line z1--z2 ifwhatever

z1234=frac1[z1,z2 holds.
Similarly a point z1234 is on the line z3--z4 if
z1234=frac2[z3,z4] holds.

These two equations are linear and provided enough variables are known it is
easy, even if tedious and error prone, to solve for all the unknowns using simple
mathematics. Fortunately MetaPost has an idiom for this kind of calculation
using the built-in variable called whatever. Each time whatever is used it is
internally given a new name which saves a lot of name inventions on the part of the
user. The following line of code results in MetaPost calculating the intersection
point, which I call z13A, between the two lines z13U,z31A, which is our parallel
lines whose points are known, and the line z13bm--z13mr which is the lower right
line of the outer diamond whose points are known.

1172 z13A = whatever[z13U,z31A] = whatever[z13bm,z13mr];

Finally, draw the second parallel line in the desired position and length.
1173 draw z13A--z31A;

1174 label.urt(btex N etex, 1/2[z13A,z31A]);

1175

Another pair of parallel lines connects the doubly bounded rectangle and the
singly bounded diamond, and we use a similar calculation as above.

1176 %%% of / car (53, 31)

1177 drawnormal(53bm, 31mr);

1178 z31B=(x31mr, y31mr+1/2marg);

1179 z53U - z31B = z53bm - z31mr;

1180 z53B = whatever[z53U,z31B] = whatever[z53bm,z53ml];

1181 draw z53B--z31B;

1182 label.ulft(btex N etex, 1/2[z53B,z31B]);

1183

That’s the end of the tricky bits for this diagram.
1184 %%% car / serial no (31, 21)

1185 z31C=(x21tm, y31bl);

1186 drawnormal(31C, 21tm);

1187

1188 %%% car / year (31, 41)

1189 z31D=(x41tm, y31br);

1190 drawnormal(31D, 41tm);

1191

51

The end of this diagram
1192 endfig; % end fig 10

1193

3.3.6 Diagram 11: NIAM

Like IDEF1X, NIAM [NH89] is a language for relational database structures. In
Europe it tends to be preferred to IDEF1X.

Although the layout and icons of the NIAM illustration differ from the prior
diagrams, no new techniques are used. The most obvious of the differences are
the use of oval and circular boxes in place of the rectangular boxes, and the use
of pairs of rectangular boxes in the middle of the relationship lines.

1194

1195 beginfig(11) % example 11 NIAM

1196 %%%drawgrid;

1197

1198 numeric diam; diam := 2onelineh; % circle diameter

1199

1200 upshift := diam;

1201 nextup := diam+upshift;

1202

1203 numeric hel, vel; % length of horizontal and vertical box pairs

1204 eh := onelineh;

1205 hel = namespace(btex made by etex)(nextra);

1206 vel = namespace(btex of prod etex)(nextra);

1207

1208 numeric del, deh; % horizontal & vertical diameters of oval boxes

1209 del := namespace(btex MANUFACTURER etex)(niextra);

1210 deh := 2eh;

1211

1212 numeric marg; marg := 2u; % margin for doubly enclosed oval boxes

1213 numeric lmarg; lmarg := marg; % gap for short lines

1214

1215 numeric dashel, dasheh; % diameters of dashed ellipses

1216 dashel := del+2marg;

1217 dasheh := deh+2marg;

1218

1219 hspace1 := diam;

1220

1221 %%% y coords

1222 lyc1 := 0;

1223 lyc2 := lyc1+nextup;

1224 lyc3 := lyc2+nextup;

1225

1226 %%% Zcol/row

1227

1228 %%% row 3

1229

1230 x13ml=0; y13bm=lyc3;

52

1231 drawovalbox(13, del, deh)(btex manufacturer etex);

1232 z14=z13c;

1233 drawdashellipse(14, dashel, dasheh);

1234

1235 z23ml=(x14mr+hspace1, y14mr);

1236 drawENT(23, hel, eh)(btex of etex);

1237

1238 z33bl=z23br;

1239 drawENT(33, hel, eh)(btex made by etex);

1240

1241 z44ml=(x33mr+hspace1, y33mr);

1242 drawdashellipse(44, dashel, dasheh);

1243 z43=z44c;

1244 drawovalbox(43, del, deh)(btex car model etex);

1245

1246 z53ml=(x44mr+hspace1, y44mr);

1247 drawdashcircle(53, diam);

1248 label(btex year etex, z53c);

1249

1250 %%% row 2

1251

1252 z22c=(x23bm,lyc2);

1253 drawcirclebox(22, namespace(btex U etex)(2nextra))(btex U etex);

1254

1255 x42tm=x43bm; y42ml=lyc2;

1256 drawdoublerectangle(42, vel, 2eh, 1/2);

1257 label(btex of etex, z42ct);

1258 label(btex is of etex, z42cb);

1259

1260 %%z52c=(x53x,lyc2);

1261 x52tm=x53bm; y52ml=lyc2;

1262 drawdoublerectangle(52, vel, 2eh, 1/2);

1263 label(btex of prod etex, z52ct);

1264 label(btex prod in etex, z52cb);

1265

1266 %%% row 1

1267

1268 z11ml=(x13ml,lyc1);

1269 drawdashellipse(11, del, deh);

1270 label(btex serial no etex, z11c);

1271

1272 z21ml=(x23ml,lyc1);

1273 drawENT(21, hel, eh)(btex of etex);

1274

1275 z31bl=z21br;

1276 drawENT(31, hel, eh)(btex has etex);

1277

1278 z41c=(x43c,lyc1);

1279 drawcirclebox(41, diam)(btex car etex);

1280

53

1281 %%%%%% lines

1282

1283 %%% manufacturer / of (14, 23)

1284 drawnormal(14mr, 23ml);

1285

1286 %%% made by / car model (33, 44)

1287 drawnormal(33mr, 44ml);

1288 draw (x33tl, y33tl+lmarg)--(x33tr, y33tl+lmarg);

1289 draw (x33mr, y33mr+lmarg)--(x33mr+eh, y33mr+lmarg);

1290

1291 %%% serial no / of (11, 21)

1292 drawnormal(11mr, 21ml);

1293

1294 %%% of / of (23, 22, 21)

1295 drawnormal(23bm, 22tm); drawnormal(22bm, 21tm);

1296 label.rt(btex id etex, z22mr);

1297

1298 %%% has / car (31, 41)

1299 drawnormal(31mr, 41ml);

1300 draw (x31tl, y31tl+lmarg)--(x31tr, y31tl+lmarg);

1301 draw (x31mr, y31mr+lmarg)--(x33mr+eh, y31mr+lmarg);

1302

1303 %%% model / of (44, 42)

1304 drawnormal(43bm, 42tm);

1305

1306 %%% is of / car (42, 41)

1307 drawnormal(42bm, 41tm);

1308 draw (x42tfr+lmarg, y42tfr)--(x42tfr+lmarg, y42br);

1309 draw (x42bm+lmarg, y42bm)--(x42bm+lmarg, y42bm-eh);

1310

1311 %%% year / of prod (53, 52)

1312 drawnormal(53bm, 52tm);

1313

1314 %%% prod in / car (52, 41)

1315 VH(52bm,41mr);

1316 drawnormalthree(52bm, 52bm.vh, 41mr);

1317 draw (x52tfr+lmarg, y52tfr)--(x52tfr+lmarg, y52br);

1318 draw (x52bm+lmarg, y52bm)--(x52bm+lmarg, y52bm-eh);

1319

The end of this diagram
1320 endfig; % end fig 11

1321

Note that the centers of the boxes on the bottom row are all at y=0, and hence
the bottom halves have negative y values. This does not matter as MetaPost
determines the actual space required for a diagram and does not base it on the
origin of the coordinate system.

The end of the MetaPost examples file.
1322 end

54

1323

The end of the example.
1324 〈/eg〉

3.4 Comments

Everyone is likely to have a different style of diagramming. You have seen how I
do it but that might not be what suits you. Nevertheless, the following comments
may be of assistance.

In my own work I tend to draw a lot of diagrams, using different .mp files, that
have similar sets of ‘commonly used variables & values’. Rather than repeating the
list in each file, I create a MetaPost file, called say mycommons.mp, that includes
these and then input mycommons after the input expressg near the start of each
diagram file.

I find it a help to sketch out the diagrams using pencil and paper before coding
them up. I have to admit, though, that the final results often look very different
from my initial ideas of the layout.

You might have noticed that I start the coding at different places in the di-
agrams. Basically I try and plan on getting the boxes aligned roughly in rows
and/or columns. I then typically start with the longest column, or more often
with the widest row, and then fill in the rest from there.

3.5 Running the MetaPost example file

The expeg.mp file has to be processed by MetaPost to obtain Encapsulated
PostScript (eps) files for viewing or printing. Depending on your installation the
command to run MetaPost may be either:
mpost expeg or
mp expeg
or perhaps something similar. This will produce eleven files, expeg.1 to expeg.11,
each of which is an eps file for the corresponding beginfig(N) in expeg.mp.
MetaPost defaults to using TEX for processing labels which outputs them using
Computer Modern fonts. Unfortunately PostScript applications do not understand
these so it is necessary to get the fonts inserted. This is most simply done by
LATEXing a document that includes the MetaPost output. A suitable file is
provided below and is configured to be processed by either LATEX or pdfLATEX.
Run LATEX and then dvips (or what you normally use to generate printable output)
and you will get all eleven diagrams.

1325 〈∗egt〉

1326 %%% expeg.tex display expressg.dtx MetaPost examples

1327

1328 \documentclass[11pt]{article}

1329 \newif\ifpdf

1330 \ifx\pdfoutput\undefined

1331 \pdffalse

55

1332 \else

1333 \pdftrue

1334 \fi

1335

1336 \ifpdf

1337 \pdfoutput=1

1338 \usepackage[pdftex,final]{graphicx}

1339 \DeclareGraphicsRule{*}{mps}{*}{}

1340 \else

1341 \usepackage[final]{graphicx}

1342 \fi

1343

1344 %%%% page sizes for ISO document on A4 paper

1345 \setlength{\headheight}{11pt}

1346 \setlength{\headsep}{10mm}

1347 \setlength{\topskip}{11pt}

1348 \setlength{\footskip}{11mm}

1349 \setlength{\textwidth}{160mm}

1350 \setlength{\textheight}{221.5mm}

1351 \setlength{\columnsep}{10mm}

1352 \setlength{\topmargin}{0mm}

1353 \setlength{\oddsidemargin}{0mm}

1354 \setlength{\evensidemargin}{0mm}

1355 \setlength{\marginparwidth}{0pt}

1356 \setlength{\marginparsep}{0pt}

1357 \setlength{\marginparpush}{0pt}

1358 \setlength{\footnotesep}{12pt}

1359 %%%% for US letterpaper need to change some margins

1360 \setlength{\topmargin}{-9.4mm}

1361 \setlength{\oddsidemargin}{1.55mm}

1362 \setlength{\evensidemargin}{1.55mm}

1363

1364 \begin{document}

1365

1366 \begin{figure}

1367 \centering

1368 \includegraphics{expeg.1}

1369 \caption{Some boxes and line styles}

1370 \end{figure}

1371

1372 \begin{figure}

1373 \centering

1374 \includegraphics{expeg.2}

1375 \caption{Example schema level diagram}

1376 \end{figure}

1377

1378 \begin{figure}

1379 \centering

1380 \includegraphics{expeg.3}

1381 \caption{Example diagram of a tree structure}

56

1382 \end{figure}

1383

1384 \begin{figure}

1385 \centering

1386 \includegraphics{expeg.4}

1387 \caption{Supertypes and subtypes}

1388 \end{figure}

1389

1390 \begin{figure}

1391 \centering

1392 \includegraphics{expeg.5}

1393 \caption{A portion of a large model}

1394 \end{figure}

1395

1396 \begin{figure}

1397 \centering

1398 \includegraphics{expeg.6}

1399 \caption{Car model using EXPRESS-G}

1400 \end{figure}

1401

1402 \begin{figure}

1403 \centering

1404 \includegraphics{expeg.7}

1405 \caption{Car model using Shlaer-Mellor}

1406 \end{figure}

1407

1408 \begin{figure}

1409 \centering

1410 \includegraphics{expeg.8}

1411 \caption{Car model using IDEF1X}

1412 \end{figure}

1413

1414 \begin{figure}

1415 \centering

1416 \includegraphics{expeg.9}

1417 \caption{Car model using OMT}

1418 \end{figure}

1419

1420 \begin{figure}

1421 \centering

1422 \includegraphics{expeg.10}

1423 \caption{Car model using E-R}

1424 \end{figure}

1425

1426 \begin{figure}

1427 \centering

1428 \includegraphics{expeg.11}

1429 \caption{Car model using NIAM}

1430 \end{figure}

1431

57

1432 \end{document}

1433

The end of the LATEX file.
1434 〈/egt〉

3.5.1 Using pdfLATEX

pdfLATEX generates a .pdf file directly from LATEX source instead of a .dvi file.
Unfortunately pdfLATEX does not understand Encapsulated PostScript in general,
but it does understand the restricted form of Encapsulated PostScript generated
by MetaPost. By default pdfLATEX will recognise files with an .mps extension as
coming from MetaPost, but MetaPost generates files with a numeric extension.
If you like to use both MetaPost and pdfLATEX, then it can get tedious changing
all the numeric extensions to .mps. The following two scripts can help with this.
The first is a shell script4 which calls a Perl script.

The shell script is called n2mps.sh. To get suitable versions of the example
MetaPost output files for use with pdfLATEX, just do:
n2mps.sh expeg
after having run MetaPost on expeg.mp.

1435 〈∗shell〉
1436 #! /bin/sh

1437

1438 ###

1439 # Shell script n2mps.sh

1440 # Call as: n2mps.sh basename

1441 # List each file basename.* in the directory and run the Perl script

1442 # to copy each basename.N to basenameN.mps, where N is an integer

1443 #

1444 # Copyright 2000, Mauro S. Costa and Peter R. Wilson

1445 ###

1446

1447 basename=${1:?"A file basename is required."}

1448 extname=N.mps

1449 echo Files $basename.N, where N is a number, will be copied to $basename$extname

1450 for file in ‘ls $basename.*‘

1451 do

1452 n2mpsprl.prl $file

1453 done

1454

1455 ####################### end shell script ###########################

1456

1457 〈/shell〉

The Perl script, which is called by the n2mps script:
1458 〈∗perl〉
1459

4You may well have to modify this to run on your operating system.

58

1460 #!/usr/local/bin/perl -w

1461

1462 ###

1463 # Perl script: n2mpsprl.prl

1464 # Call as: n2mpsprl.prl filename

1465 # If filename is of the form basename.N, where N is an integer,

1466 # copies file basename.N to file basenameN.mps

1467 #

1468 # Copyright 2000, Mauro S. Costa and Peter R. Wilson

1469 ##

1470

1471 # Test for correct number of input parameters

1472 die "Invalid command line arguments.\nTry $0 <src> \n" if($#ARGV > 1);

1473 die "Invalid command line arguments.\nTry $0 <src> \n" if($#ARGV < 0);

1474

1475 # Assign input file name to variable

1476 $input_file = $ARGV[0];

1477

1478 ## test if ends with a number, exit if not

1479 if ($input_file =~ /\w\.\d/) { ; } else { exit; }

1480

1481 # Remove the "dot" from the string variable

1482 # holding the input file name

1483 $input_file =~ s/\.// ;

1484

1485 # Create a list variable composed of the string variable holding

1486 # the concatenated input file name and the extension ".mps"

1487 @name_list = ($input_file,’.mps’) ;

1488

1489 # Join the string variables in the name_list variable into

1490 # a single string variable

1491 $output_file = join("",@name_list) ;

1492

1493 # create a list variable composed to the parameters needed

1494 # for the system copy command excution

1495 @exec_list = (’cp’, $ARGV[0], $output_file) ;

1496

1497 # Execute the system copy ("cp") command

1498 system(@exec_list) ;

1499

1500 ############################ end perl script ##########################

1501

1502 〈/perl〉
As an alternative when using pdfLATEX and the graphicx package, putting

\DeclareGraphicsRule{*}{mps}{*}{}
will cause included graphics files with unknown extensions (e.g., as generated by
MetaPost) to be treated as .mps files.

\documentclass...

\usepackage{ifpdf}% you should have this

59

\ifpdf

\pdfoutput=1

\usepackage[pdftex,final]{graphicx}

\DeclareGraphicsRule{*}{mps}{*}{}

\else

\usepackage[final]{graphicx}

\fi

...

\includegraphics{mpfig.23}

...

3.6 Using LATEX instead of TEX

As already noted, MetaPost defaults to using TEX for typesetting labels. If you
would prefer it to use LATEX instead, then two things have to be done.

1. MetaPost looks at the value of an environment variable called TEX to see
what typesetting system it should use. If the variable is not set, then it uses
TEX. To get it to use LATEX the environment variable has to be set to latex.
For example, on the system I use this is done by:

TEX=latex

export TEX

2. LATEX \documentclass and \begin{document} commands must be put into
the verbatimtex. . . etex group at the start of the diagramming file. For the
example, this might look like

verbatimtex

\documentclass{article}

% \usepackage{...} % for any packages

\def\twolines#1#2{\vbox{\hbox{#1} \hbox{#2}}}

\begin{document}

etex

NOTE: Both the above are required for LATEX. On the other hand, if TEX is
either undefined or has a value other than tex, then there must be no LATEX code
anywhere in the .mp file.

If you need to generate individual self-contained ps files for inclusion in non-
LATEX documents where the font used for labels is a member of the Computer
Modern family, then you need to use LaTeX and dvips on *.tex files that consist
of only a single diagram and no other text at all. At least on my setup I have found
it best to run dvips as normal but with output to a file instead of a printer. Then
use whatever tools are available to you to convert the .ps file to an .eps one (or
at least set the correct bounding box values). The primary source on generating
and using Encapsulated PostScript in the LATEX world is [Rec97], and [GRM97]
also has useful information.

60

3.7 Using PostScript fonts

MetaPost can be made to use PostScript fonts and, providing the labels don’t
require any special (TEX) processing, then use of LATEX may be avoided altogether.
In order to do this, certain requirements have to be put on the content on the .mp
file.

• The diagram file must begin with the lineprologues

prologues:=2;
which will add a prologue for PostScript font to the output file.

• The defaultfont must be changed. What it has to be changed to dependsdefaultfont

on the font you want to use. For example, to use the Times Roman font,
put:
defaultfont:="ptmr8r";
just after the prologues line.

For this incantation to work, the file ptmr8r.tfm must exist in a location
where MetaPost looks for .tfm files (on the system I use it is in directory
../texmf/fonts/tfm/adobe/times). Also, the file psfonts.map must in-
clude a line like
ptmr8r Times-Roman ...
Again, on my system psfonts.map is in directory ../texmf/dvips/misc.

I don’t know whether or not this works if you don’t have a LATEX distribution
— it probably doesn’t. But it’s unlikely that you don’t have one if you intend
to use MetaPost.

As a final note on changing fonts, the MetaPost defaultfont and defaultscale
values only apply to quoted text (e.g., "quoted text") and not to ‘btexed’ text
(e.g., btex btexed text etex). Conversely, TEX or LATEX commands only apply
to btexed text and not to quoted text. For more details on this, see [Wil99].

4 The MetaPost code

We start by announcing what it is for.

1503 〈∗up〉
1504 %%% EXPRESSG.MP MetaPost macros for EXPRESS-G and other BLA diagrams

1505 %%% version 1.5, 31 July 2003

1506 %%% version 1.6, 29 February 2004

1507 %%% version 1.61, 17 March 2004

1508

1509 show "expressg.mp version 1.61, 2004/03/17";

1510

4.1 Variables

u The unit of length.

61

1511 newinternal u; numeric u;

1512 u := 1mm;

1513

maxx

maxy

The maximum x and y coordinates for a diagram.
1514 newinternal maxx, maxy;

1515 numeric maxx, maxy;

1516 maxx := 159.5u; % smidgeon under 160mm for ISO

1517 maxy := 210u; % 210mm for ISO

1518

defaultdotdiam

dotdiam

The default and actual diameter of circle and dot line end styles.
1519 newinternal defaultdotdiam, dotdiam;

1520 numeric defaultdotdiam, dotdiam;

1521 defaultdotdiam := 2u;

1522 dotdiam := defaultdotdiam;

1523

normalpensize

normalpensize

normalpensize

The diameters of the pens for drawing normal, thick and thin lines. (The size of
the default MetaPost pen is 0.5bp).

1524 newinternal normalpensize, thickpensize, thinpensize;

1525 numeric normalpensize, thickpensize, thinpensize;

1526 normalpensize := 0.5bp;

1527 thickpensize := 1.5bp;

1528 thinpensize := 0.25bp;

dotsscale dotsscale is the amount the ...pensize has to be increased so that a dotted
line looks as thick as a continuous or dashed line.

1529 newinternal dotsscale; numeric dotsscale;

1530 dotsscale := 2;

1531

normalpen

thickpen

thinpen

dotspen

dotpen

The pens for drawing lines, plus dotpen for drawing a dot line end style.
1532 newinternal normalpen, thickpen, thinpen, dotspen, dotpen;

1533 pen normalpen, thickpen, thinpen, dotspen, dotpen;

1534 normalpen := pencircle scaled normalpensize; % i.e. defaultpen;

1535 thickpen := pencircle scaled thickpensize;

1536 thinpen := pencircle scaled thinpensize;

1537 dotspen := pencircle scaled (dotsscale*normalpensize);

1538 dotpen := pencircle scaled dotdiam;

1539

defaultsmoothrad

smoothrad

The default and initial values for the radius of the arc used for joining two lines.
1540 newinternal defaultsmoothrad;

1541 numeric smoothrad, defaultsmoothrad;

1542 smoothrad := defaultsmoothrad := 2u;

1543

62

defaultdrumlid

drumlid

The default and initial values for the ratio of the minor to major diameter of
ellipses for the top and bottom of drums.

1544 newinternal defaultdrumlid;

1545 numeric drumlid, defaultdrumlid;

1546 drumlid := defaultdrumlid := 0.2;

1547

defaultgal

defaultgab

defaultgfl

defaultgfb

The default values for the length and base width width of arrowheads and fanins.

1548 %%% default length and base width for arrowheads and fanin

1549 newinternal defaultgal, defaultgab, defaultgfl, defaultgfb;

1550 numeric defaultgal, defaultgab, defaultgfl, defaultgfb;

1551 defaultgal := defaultgfl := defaultdotdiam;

1552 defaultgab := defaultgfb := defaultgal;

1553

gal

gab

gfl

gfb

Values of length and base width of arrowheads and fanins.
1554 %%% length and base width of arrowheads and fanins

1555 newinternal gal, gab, gfl, gfb;

1556 numeric gal, gab, gfl, gfb;

1557 gal := defaultgal;

1558 gab := defaultgab;

1559 gfl := defaultgfl;

1560 gfb := defaultgfb;

1561

onelineh The minimum height of a box that encloses a single line of text.

1562 newinternal onelineh;

1563 numeric onelineh;

1564 onelineh := 5u;

1565

sdtbl

sdtbh

sdtbs

The length, height and inset for a simple data type box. The length is sufficient
for the name ‘BOOLEAN’ and the height for one line of text.

1566 %%% length, height & inset for simple data type boxes

1567 newinternal sdtbl, sdtbh, sdtbs;

1568 numeric sdtbl, sdtbh, sdtbs;

1569 sdtbl := 22u;

1570 sdtbh := onelineh;

1571 sdtbs := 2u;

1572

sdtbel

sdtbeh

sdtbes

The length, height and inset for a simple EXPRESSION data type box. The
length is sufficient for the name ‘EXPRESSION’ and the height for one line of
text.

1573 %%% length, height & inset for EXPRESSION data type boxes

1574 newinternal sdtbel, sdtbeh, sdtbes;

1575 numeric sdtbel, sdtbeh, sdtbes;

1576 sdtbel := 28u;

63

1577 sdtbeh := sdtbh; sdtbes := sdtbs;

1578

sdtbgel

sdtbgeh

sdtbges

The length, height and inset for a simple GENERICENT data type box. The
length is sufficient for the name ‘GENERIC ENTITY’ and the height for one line
of text.

1579 %%% length, height & inset for GENERICENT data type boxes

1580 newinternal sdtbgel, sdtbgeh, sdtbges;

1581 numeric sdtbgel, sdtbgeh, sdtbges;

1582 sdtbgel := 38u;

1583 sdtbgeh := sdtbh; sdtbges := sdtbs;

1584

pconl The average length of a numeric page connector (e.g., for 9,9 (9,9)).
1585 %%% average length of numeric page connector

1586 newinternal pconl;

1587 numeric pconl; % length of page connector (for e.g., 9,9 (9,9))

1588 pconl:=15u;

pconh Height of average page connector (one line of text).
1589 %%% height of page connectors (one line)

1590 newinternal pconh;

1591 numeric pconh;

1592 pconh := onelineh;

1593

enth

typeh

The height of a one line ENT(ITY) box (enth) and the height of a one line
ENUM(ERATION), SELECT or TYPE box.

1594 %%% heights of entity, enum, select, type boxes (One text line)

1595 newinternal enth, typeh;

1596 numeric enth, typeh;

1597 enth := onelineh;

1598 typeh := onelineh;

1599

ish

isrh

The height of a normal one line interschema box (ish) and an interschema box
with one line each for the name and rename (isrh).

1600 %%% height of interschema boxes (one text line, no rename), and (name + rename)

1601 newinternal ish, isrh;

1602 numeric ish, isrh;

1603 ish := 2onelineh;

1604 isrh := 3onelineh;

1605

schemah Height of a one line SCHEMA box.
1606 %%% height of schema boxes (one text line)

1607 newinternal schemah;

1608 numeric schemah;

1609 schemah := 2onelineh;

1610

64

eventh

eventslope

The height (eventh) of a one line (G/L)EVENT box and the slope of the sides of
a (G/L)EVENT box.

1611 %%% height and slope of event boxes

1612 newinternal eventh, eventslope;

1613 numeric eventh, eventslope;

1614 eventh := onelineh;

1615 eventslope := 0.25;

1616

nextra

niextra

Margins for namespaces in normal (nextra) and inset (niextra) boxes. Inset
boxes are the ENUM, SELECT and TYPE boxes.

1617 %%% extra namespaces for boxed names

1618 newinternal nextra, niextra;

1619 numeric nextra, niextra;

1620 nextra := 2u;

1621 niextra := nextra+sdtbs;

1622

ndextra Margin for namespace on a relationship line.
1623 %%% extra namespace for attribute names

1624 newinternal ndextra;

1625 numeric ndextra;

1626 ndextra := nextra+dotdiam;

1627

4.2 Utility routines

VH Calculates the intersection point z$vh between the vertical line through z$ and
the horizontal line through z$$ (see Figure 3).

1628 %%% calculates mid-point on a path like |_ (vertical, horizontal)

1629 %%% final points are: z$, z$vh, z$$, where z$vh=(x$,y$$)

1630 def VH(suffix $, $$) =

1631 z$vh=(x$,y$$);

1632 enddef;

1633

VhV Calculates the point z$vhv on the vertical line through z$ and the point z$$vhv
on the vertical line through z$$, such that the line z$vhv--z$$vhv is horizontal
and centered vertically between the given points (see Figure 3).

1634 %%% Calculates mid-points on a path like |_

1635 %%% | (vertical, horizontal, vertical)

1636 %%% final points are: z$, z$vhv, z$$vhv, z$$

1637 def VhV(suffix $, $$) =

1638 y$$vhv=1/2[y$,y$$]; x$$vhv=x$$;

1639 z$vhv=(x$,y$$vhv);

1640 enddef;

1641

65

HvH Calculates the point z$hvh on the horizontal line through z$ and the point z$$hvh
on the horizontal line through z$$, such that the line z$hvh--z$$hvh is vertical
and centered horizontally between the given points (see Figure 3).

1642 %%% Calculates mid-points on a path like -|_ (horizontal, vertical, horizontal)

1643 %%% final points are: z$, z$hvh, z$$hvh, z$$

1644 def HvH(suffix $, $$) =

1645 x$hvh=1/2[x$,x$$]; y$hvh=y$;

1646 z$$hvh=(x$hvh,y$$);

1647 enddef;

1648

VyV A generalisation of VhV. Calculates the point z$vyv on the vertical line through
z$ and the horizontal line through y@, and the point z$$vyv on the vertical line
through z$$ and the horizontal line through y@ (see Figure 4).

1649 %%% Calculates turning points on a U shaped path (vertical, horizontal, vertical)

1650 %%% final points are: z$, z$vyv, z$$vyv, z$$

1651 def VyV(suffix $, @, $$) =

1652 z$$vyv=(x$$,y@);

1653 z$vyv =(x$, y@);

1654 enddef;

1655

HxH A generalisation of HvH. Calculates the point z$hxh on the horizontal line through
z$ and the vertical line through x@, and the point z$$hgh on the horizontal line
through z$$ and the vertical line through x@ (see Figure 4).

1656 %%% Calculates corner points rotated U shaped path (horizontal, vertical, horizontal)

1657 %%% final points are: z$, z$hxh, z$$hxh, z$$

1658 def HxH(suffix $, @, $$) =

1659 z$$hxh=(x@,y$$);

1660 z$hxh =(x@,y$);

1661 enddef;

1662

namespace namespace(〈name〉)(〈margin〉) calculates the length of the text string 〈name〉
plus the 〈margin〉 length. The body is enclosed in parentheses5 so you can do
c=2namespace...

1663 %%% calculates length taken up by typesetting str, plus margin

1664 def namespace(text str)(expr margin) =

1665 (xpart lrcorner(str) - xpart llcorner(str) + margin)

1666 enddef;

1667

dashes Shorthand for a dashed line style. Use as: draw ... dashes;.
1668 def dashes =

1669 dashed evenly

1670 enddef;

1671

5Requested by Stephan Hennig, ctt thread [MP, expressg, latexmp] namespace and textext,
16 March 2004

66

dots Shorthand for a dotted line style. Use as: draw ... dots;.
1672 def dots =

1673 dashed withdots

1674 enddef;

1675

dashedgrid dashedgrid(〈nx 〉, 〈ny〉, 〈dist〉) draws a thin dashed grid with 〈nx 〉 and 〈ny〉
divisions in the x and y directions, with 〈dist〉 between the grid lines. The grid
lines are numbered.

1676 % draw a general dashed grid

1677 def dashedgrid(expr nx, ny, dist) =

1678 save zg_, zg__, oldpen;

1679 pair zg_[], zg__[];

1680 pen oldpen; oldpen = currentpen;

1681 pickup thinpen;

1682 for i = 0 upto nx:

1683 zg_[i] = (i*dist, 0); zg_[i+1000] = (i*dist, ny*dist);

1684 draw zg_[i]--zg_[i+1000] dashes;

1685 label.bot(decimal(i), zg_[i]);

1686 endfor

1687 for i = 0 upto ny:

1688 zg__[i] = (0, i*dist); zg__[i+1000] = (nx*dist, i*dist);

1689 draw zg__[i]--zg__[i+1000] dashes;

1690 label.lft(decimal(i), zg__[i]);

1691 endfor

1692 pickup oldpen;

1693 enddef;

1694

drawgrid drawgrid draws a thin dashed grid filling the permitted space for an ISO Standard
diagram. The units are in mm and the lines are at 10mm intervals with labeling
in terms of mm.

1695 %%% draw a 1cm spaced grid of 16(x) by 21(y) cms. (units are mm)

1696 def drawgrid =

1697 dashedgrid(16, 21, 10mm);

1698 enddef;

1699

The box drawing routines take as an argument the suffix ($) of the left-hand
bottom corner point of the box, and normally the length and height of the box.
The coordinates of the box corners are calculated (zbl, zbr, z$tr and z$tl).
The midpoints of the sides of the box (zbm, zmr, ztm, zml) are calculated as
well. The text ‘center’ of the box is z$c, while the geometric center of the box
will be at the intersection point of the lines z$bm--z$tm and z$ml--z$mr. See
Figure 5 for an illustration.

rectpoints The routine rectpoints($, l, h) calculates the corner and midpoints of a rect-
angular box with bottom left at z$, length l and height h. Note that it does not
calculate the center point (see Figure 5).

67

1700 %%% calculates corner and midpoints of a rectangle,

1701 %%% bottom left at $, length l, height h

1702 def rectpoints(suffix $)(expr l, h) =

1703 z$bl = z$;

1704 z$tr = (x$+l, y$+h);

1705 z$br = (x$tr, y$bl);

1706 z$tl = (x$bl, y$tr);

1707 z$ml = 1/2[z$bl, z$tl];

1708 z$mr = 1/2[z$br, z$tr];

1709 z$bm = 1/2[z$bl, z$br];

1710 z$tm = 1/2[z$tl, z$tr];

1711 enddef;

1712

rhompoints The routine rhompoints($, l, h, s) calculates the corner and midpoints of a
rhomboid length l, height h, sideslope s, and positioned with its bottom left hand
corner at z$. The center point is not calculated (see Figure 6).

1713 %%% calculate corner, midpoints and center point of a rhomboid.

1714 def rhompoints(suffix $)(expr l, h, s) =

1715 save eshift;

1716 numeric eshift; eshift = s*h;

1717 z$bl = z$;

1718 z$tr = (x$+l+eshift, y$+h);

1719 z$br = (x$bl+l, y$bl);

1720 z$tl = (x$bl+eshift, y$tr);

1721 z$ml = 1/2[z$bl, z$tl];

1722 z$mr = 1/2[z$br, z$tr];

1723 z$bm = (1/2[x$ml,x$mr], y$bl);

1724 z$tm = (x$bm, y$tr);

1725 enddef;

1726

circpoints The routine circpoints($, d) calculates the ‘corner’ and ‘midpoints’ on the
circumference of a circle, center z$ and diameter d.

1727 %%% calculate circumferential points on a circle

1728 def circpoints(suffix $)(expr diam) =

1729 save rad, sinrad, cosrad;

1730 numeric rad, sinrad, cosrad;

1731 rad = diam/2;

1732 sinrad = rad*(sind 45);

1733 cosrad = rad*(cosd 45);

1734 z$c=z$;

1735 z$ml=(x$c-rad, y$c);

1736 z$mr=(x$c+rad, y$c);

1737 z$bm=(x$c, y$c-rad);

1738 z$tm=(x$c, y$c+rad);

1739 z$tr=(x$c+cosrad, y$c+sinrad);

1740 z$bl=(x$c-cosrad, y$c-sinrad);

1741 z$br=(x$tr, y$bl);

68

1742 z$tl=(x$bl, y$tr);

1743 enddef;

1744

4.3 Path routines

~ The binary operator ~ is a reimplementation of the METAFONT plain base
softjoin path connector (METAFONTbook, page 266); it connects paths via
a small circular arc radius smoothrad.

1745 %%% circular arc join between two paths

1746 tertiarydef p ~ q =

1747 begingroup

1748 c_ := fullcircle scaled 2smoothrad shifted point 0 of q;

1749 a_ := ypart(c_ intersectiontimes p);

1750 b_ := ypart(c_ intersectiontimes q);

1751 if a_ < 0: point 0 of p{direction 0 of p} else: subpath(0,a_) of p fi

1752 ... if b_ < 0: {direction infinity of q}point infinity of q

1753 else: subpath(b_,infinity) of q fi

1754 endgroup

1755 enddef;

1756

sharply sharply(zi, zj, ...zn) creates a piecewise linear path through the given
points. (The code is based on the flex routine, page 267 of the METAFONT-
book).

1757 %%% piecewise linear path between the given points

1758 def sharply(text t) = % t is a list of pairs

1759 hide(n_:=0; for z=t: z_[incr n_]:=z; endfor)

1760 z_1 for k=2 upto n_: --z_[k] endfor

1761 enddef;

1762

smoothly smoothly(zi, zj, ...zn) creates a piecewise linear path through the given
points, with the sharp corners replaced by circular arcs of radius smoothrad. page
267 of the METAFONTbook).

1763 %%% piecewise linear path between the given points with smooth corners

1764 def smoothly(text t) = % t is a list of pairs

1765 hide(n_:=0; for z=t: z_[incr n_]:=z; endfor)

1766 (z_1 for k=2 upto n_-1: --z_[k]) ~ (z_[k] endfor --z_[n_])

1767 enddef;

1768

4.4 Line end drawing routines

drawO Draw an open circle, diameter dotdiam at the end of the vector z$ to z$$. Any
underlying graphic/text will be hidden. All the line end drawing routines have
similar code.

1769 %%% Draw an open circle at end of vector from $ to $$

69

1770 def drawO(suffix $, $$) =

Keep everything inside a group and specify the local variables.
1771 begingroup

1772 save v_, c_, l, p;

Specify the types of the local variables.
1773 pair v_, c_;

1774 numeric l;

1775 path p;

v_ is the difference between the start and end points of the line. That is, it is the
vector from the end point to the start point.

1776 v_ := z$-z$$;

Using MetaPost’s Pythagorean addition operator ++, where a++b means++

xpart

ypart

√
a2 + b2, we can calculate the length l of the line from the x and y dimension

(xpart and ypart) of the vector v_.
1777 l := (xpart v_)++(ypart v_); % length of the line

Using mediation involving the ratio of the circle radius to the length of the line,
calculate c_, the required position of the center of the circle at the end of the line.

1778 c_ := (dotdiam/(2l))[z$$,z$];

p is the path for drawing the circle.
1779 p := fullcircle scaled dotdiam shifted c_;

Erase anything underneath the circle.
1780 unfill p;

Now we can draw the circle (twice to make sure it shows).
1781 draw p; draw p;

Finish the local group and end.
1782 endgroup

1783 enddef;

1784

drawD Draw a closed circle, diameter dotdiam at the end of the vector z$ to z$$. Any
underlying graphic/text will be hidden.

1785 %%% Draw a closed circle at end of vector from $ to $$

1786 def drawD(suffix $, $$) =

1787 begingroup

1788 save v_, c_, l, p;

1789 pair v_, c_;

1790 numeric l;

1791 path p;

1792 v_ := z$-z$$;

1793 l := (xpart v_)++(ypart v_); % length of the line

1794 c_ := (dotdiam/(2l))[z$$,z$];

1795 p := fullcircle scaled dotdiam shifted c_;

1796 fill p;

1797 endgroup

70

1798 enddef;

1799

drawOA Draw an open arrowhead, length gal and base width gab, at the end of the vector
from z$ to z$$. The same general code pattern is used for non-circular line end
styles, and is described here. It is not too different from drawing circular ends,
except that the orientation of the line has to be taken into account.

1800 %%% draw an open arrowhead at end of vector from $ to $$

1801 def drawOA(suffix $, $$) =

1802 begingroup

1803 save v_, c_, v_u, c_t, c_b, l, hb, p;

1804 pair v_, c_, v_u, c_t, c_b;

1805 numeric l, hb;

1806 path p;

1807 hb := gab/2;

1808 v_ := z$-z$$;

1809 l := (xpart v_)++(ypart v_); % length of the line

1810 c_ := (gal/(l))[z$$,z$]; % base of arrowhead

Calculate the unit vector in the direction of the line.
1811 v_u := unitvector v_;

Calculate one of the corner points on the base of the triangle by shifting the
midbase point in the direction of the normal to the line by half the base width.

1812 c_t := c_ shifted (-hb*(ypart v_u), hb*(xpart v_u));

Specify that the other corner point is symmetrically opposite the first.
1813 c_b - c_ = c_ - c_t;

Draw the triangular arrowhead.
1814 p = c_b--z$$--c_t--cycle;

1815 unfill p;

1816 draw p; draw p;

1817 endgroup

1818 enddef;

1819

drawCA Draw a closed (black) arrowhead, length gal and base width gab, at the end of
the vector from z$ to z$$.

1820 %%% draw a closed arrowhead at end of vector from $ to $$

1821 def drawCA(suffix $, $$) =

1822 begingroup

1823 save v_, c_, v_u, c_t, c_b, l, hb, p;

1824 pair v_, c_, v_u, c_t, c_b;

1825 numeric l, hb;

1826 path p;

1827 hb := gab/2;

1828 v_ := z$-z$$;

1829 l := (xpart v_)++(ypart v_); % length of the line

1830 c_ := (gal/(l))[z$$,z$]; % base of arrowhead

1831 v_u := unitvector v_;

71

1832 c_t := c_ shifted (-hb*(ypart v_u), hb*(xpart v_u));

1833 c_b - c_ = c_ - c_t;

1834 p = c_b--z$$--c_t--cycle;

1835 filldraw p;

1836 endgroup

1837 enddef;

1838

drawA Draw a simple arrowhead, length gal and base width gab, at the end of the vector
from z$ to z$$.

1839 %%% draw a simple arrowhead at end of vector from $ to $$

1840 def drawA(suffix $, $$) =

1841 begingroup

1842 save v_, c_, v_u, c_t, c_b, l, hb, p;

1843 pair v_, c_, v_u, c_t, c_b;

1844 numeric l, hb;

1845 path p;

1846 hb := gab/2;

1847 v_ := z$-z$$;

1848 l := (xpart v_)++(ypart v_); % length of the line

1849 c_ := (gal/(l))[z$$,z$]; % base of arrowhead

1850 v_u := unitvector v_;

1851 c_t := c_ shifted (-hb*(ypart v_u), hb*(xpart v_u));

1852 c_b - c_ = c_ - c_t;

1853 p = c_b--z$$--c_t;

1854 draw p;

1855 endgroup

1856 enddef;

1857

drawF Draw a fanin, length gfl and base width gfb, at the end of the vector from z$ to
z$$.

1858 %%% draws a fanin at the end of the vector from $ to $$

1859 def drawF(suffix $, $$) =

1860 begingroup

1861 save v_, c_, v_u, c_t, c_b, l, hb, p;

1862 pair v_, c_, v_u, c_t, c_b;

1863 numeric l, hb;

1864 path p;

1865 hb := gfb/2;

1866 v_ := z$-z$$;

1867 l := (xpart v_)++(ypart v_); % length of the line

1868 c_ := (gfl/(l))[z$$,z$]; % apex of fan

1869 v_u := unitvector v_;

1870 c_t := z$$ shifted (-hb*(ypart v_u), hb*(xpart v_u));

1871 c_b - z$$ = z$$ - c_t;

1872 p = c_b--c_--c_t;

1873 draw p;

1874 endgroup

72

1875 enddef;

1876

4.5 Line drawing routines

drawdots Draw a dotted line between the two points z$ and z$$.
1877 %%% Draw a dotted line from $ to $$

1878 def drawdots(suffix $, $$) =

1879 pickup dotspen;

1880 draw z$--z$$ dots;

1881 pickup normalpen;

1882 enddef;

1883

drawdotsthree Draw a straight dotted line between the three points z$, z@ and z$$.
1884 %%% Draws the dotted line $--@--$$

1885 def drawdotsthree(suffix $, @, $$) =

1886 pickup dotspen;

1887 draw z$--z@--z$$ dots;

1888 pickup normalpen;

1889 enddef;

1890

drawdotsfour Draw a straight dotted line between the four points z$, z@, z@@ and z$$.
1891 %%% Draw the dotted line $--@--@@--$$

1892 def drawdotsfour(suffix $, @, @@, $$) =

1893 pickup dotspen;

1894 draw z$--z@--z@@--z$$ dots;

1895 pickup normalpen;

1896 enddef;

1897

drawdotsO Draw a dotted line between the two points z$ and z$$, ending in an open circle,
diameter dotdiam, at z$$.

1898 %%% Draw a dotted line from $ to $$ with open circle at $$

1899 def drawdotsO(suffix $, $$) =

1900 pickup dotspen;

1901 draw z$--z$$ dots;

1902 pickup normalpen;

1903 drawO($, $$);

1904 enddef;

1905

drawdotsthreeO Draw a straight dotted line between the three points z$, z@ and z$$, ending in an
open circle, diameter dotdiam, at z$$.

1906 %%% Draws the dotted line $--@--$$

1907 def drawdotsthreeO(suffix $, @, $$) =

1908 pickup dotspen;

1909 draw z$--z@--z$$ dots;

73

1910 pickup normalpen;

1911 drawO(@, $$);

1912 enddef;

1913

drawdotsfourO Draw a straight dotted line between the four points z$, z@, z@@ and z$$, ending
in an open circle, diameter dotdiam, at z$$.

1914 %%% Draw the dotted line $--@--@@--$$

1915 def drawdotsfourO(suffix $, @, @@, $$) =

1916 pickup dotspen;

1917 draw z$--z@--z@@--z$$ dots;

1918 pickup normalpen;

1919 drawO(@@, $$);

1920 enddef;

1921

drawdotsOO Draw a dotted line between the two points z$ and z$$, ending in open circles,
diameter dotdiam, at z$ and z$$.

1922 %%% Draw the dotted line from $ to $$, ending in circles diameter dotdiam at $ and $$

1923 def drawdotsOO(suffix $, $$) =

1924 pickup dotspen;

1925 draw z$--z$$ dots;

1926 pickup normalpen;

1927 drawO($, $$); drawO($$, $);

1928 enddef;

1929

drawdash Draw a dashed line between the two points z$ and z$$.
1930 %%% draws a dashed line from $ to $$

1931 def drawdash(suffix $, $$) =

1932 draw z$--z$$ dashes;

1933 enddef;

1934

drawdashthree Draw a straight dashed line between the three points z$, z@ and z$$.
1935 %%% draws the dashed line $--@--$$

1936 def drawdashthree(suffix $, @, $$) =

1937 draw z$--z@--z$$ dashes;

1938 enddef;

1939

drawdashfour Draw a straight dashed line between the four points z$, z@, z@@ and z$$.
1940 %%% draws the dashed line $--@--@@--$$

1941 def drawdashfour(suffix $, @, @@, $$) =

1942 draw z$--z@--z@@--z$$ dashes;

1943 enddef;

1944

74

drawdashO Draw a dashed line between the two points z$ and z$$, ending in an open circle,
diameter dotdiam, at z$$.

1945 %%% draws a dashed line from $ to $$, ending in a circle diameter dotdiam at $$

1946 def drawdashO(suffix $, $$) =

1947 draw z$--z$$ dashes;

1948 drawO($, $$);

1949 enddef;

1950

drawdashthreeO Draw a straight dashed line between the three points z$, z@ and z$$, ending in
an open circle, diameter dotdiam, at z$$.

1951 %%% draws the dashed line $--@--$$ with circle at $$

1952 def drawdashthreeO(suffix $, @, $$) =

1953 draw z$--z@--z$$ dashes;

1954 drawO(@, $$);

1955 enddef;

1956

drawdashfourO Draw a straight dashed line between the four points z$, z@, z@@ and z$$, ending
in an open circle, diameter dotdiam, at z$$.

1957 %%% draws the dashed line $--@--@@--$$ with circle at $$

1958 def drawdashfourO(suffix $, @, @@, $$) =

1959 draw z$--z@--z@@--z$$ dashes;

1960 drawO(@@, $$);

1961 enddef;

1962

drawdashOO Draw a dashed line between the two points z$ and z$$, ending in open circles,
diameter dotdiam, at z$ and z$$.

1963 % drawdashOO($, $$)

1964 %%% draws a dashed line from $ to $$, ending in circles diameter dotdiam at $ and $$

1965 def drawdashOO(suffix $, $$) =

1966 draw z$--z$$ dashes;

1967 drawO($, $$); drawO($$, $);

1968 enddef;

1969

drawnormal Draw a normal thickness line between the two points z$ and z$$.
1970 %%% draws a normal line from $ to $$.

1971 def drawnormal(suffix $, $$) =

1972 draw z$--z$$;

1973 enddef;

1974

drawnormalthree Draw a straight normal thickness line between the three points z$, z@ and z$$.
1975 % drawnormalthree($, @, $$)

1976 %%% draws the normal line $--@--$$

1977 def drawnormalthree(suffix $, @, $$) =

1978 draw z$--z@--z$$;

75

1979 enddef;

1980

drawnormalfour Draw a straight normal thickness line between the four points z$, z@, z@@ and
z$$.

1981 %%% draws the normal line $--@--@@--$$

1982 def drawnormalfour(suffix $, @, @@, $$) =

1983 draw z$--z@--z@@--z$$;

1984 enddef;

1985

drawnormalO Draw a straight normal thickness line between the two points z$ and z$$, ending
in an open circle, diameter dotdiam, at z$$.

1986 % drawnormalO($, $$)

1987 %%% draws a normal line from $ to $$, ending in a circle diameter dotdiam at $$

1988 def drawnormalO(suffix $, $$) =

1989 draw z$--z$$;

1990 drawO($, $$);

1991 enddef;

1992

drawnormalthreeO Draw a straight normal thickness line between the three points z$, z@ and z$$,
ending in an open circle, diameter dotdiam, at z$$.

1993 %%% draws the normal line $--@--$$, ending in a circle at $$

1994 def drawnormalthreeO(suffix $, @, $$) =

1995 draw z$--z@--z$$;

1996 drawO(@, $$);

1997 enddef;

1998

drawnormalfourO Draw a straight normal thickness line between the four points z$, z@, z@@ and
z$$, ending in an open circle, diameter dotdiam, at z$$.

1999 %%% draws the line $--@--@@--$$, ending in a circle at $$

2000 def drawnormalfourO(suffix $, @, @@, $$) =

2001 draw z$--z@--z@@--z$$;

2002 drawO(@@, $$);

2003 enddef;

2004

2005

drawnormalOO Draw a straight normal thickness line between the two points z$ and z$$, ending
in open circles, diameter dotdiam, at z$ and z$$.

2006 % drawnormalOO($, $$)

2007 %%% draws a normal line from $ to $$, ending in circles diameter dotdiam at $ and $$

2008 def drawnormalOO(suffix $, $$) =

2009 draw z$--z$$;

2010 drawO($, $$); drawO($$, $);

2011 enddef;

2012

76

drawnormalD Draw a straight normal thickness line between the two points z$ and z$$, ending
in a black dot, diameter dotdiam, at z$$.

2013 %%% draws a normal line from $ to $$, ending in a dot diameter dotdiam at $$

2014 def drawnormalD(suffix $, $$) =

2015 draw z$--z$$;

2016 drawD($, $$);

2017 enddef;

2018

drawnormalthreeD Draw a straight normal thickness line between the three points z$, z@ and z$$,
ending in a black dot, diameter dotdiam, at z$$.

2019 %%% draws the normal line $--@--$$, ending in a dot at $$

2020 def drawnormalthreeD(suffix $, @, $$) =

2021 draw z$--z@--z$$;

2022 drawD(@, $$);

2023 enddef;

2024

drawnormalfourD Draw a straight normal thickness line between the four points z$, z@, z@@ and
z$$, ending in a black dot, diameter dotdiam, at z$$.

2025 %%% draws the normal line $--@--@@--$$, ending in a dot at $$

2026 def drawnormalfourD(suffix $, @, @@, $$) =

2027 draw z$--z@--z@@--z$$;

2028 drawD(@@, $$);

2029 enddef;

2030

2031

drawnormalDD Draw a straight normal thickness line between the two points z$ and z$$, ending
in black dots, diameter dotdiam, at z$ and z$$.

2032 %%% draws a normal line from $ to $$, ending in dots diameter dotdiam at $ and $$

2033 def drawnormalDD(suffix $, $$) =

2034 draw z$--z$$;

2035 drawD($, $$); drawD($$, $);

2036 enddef;

2037

drawnormalOA Draw a straight normal thickness line between the two points z$ and z$$, ending
with an open arrowhead, length gal and base width gab, at z$$.

2038 %%% draws a normal line from $ to $$, ending with an open arrowhead at $$

2039 def drawnormalOA(suffix $, $$) =

2040 draw z$--z$$;

2041 drawOA($, $$);

2042 enddef;

2043

drawnormalCA Draw a straight normal thickness line between the two points z$ and z$$, ending
with a closed (black) arrowhead, length gal and base width gab, at z$$.

77

2044 %%% draws a normal line from $ to $$, ending with a closed arrowhead at $$

2045 def drawnormalCA(suffix $, $$) =

2046 draw z$--z$$;

2047 drawCA($, $$);

2048 enddef;

2049

drawnormalthreeCA Draw a straight normal thickness line between the three points z$, z@ and z$$,
ending in a closed arrowhead at z$$.

2050 %%% draws the normal line $--@--$$, ending in a black arrowhead at $$

2051 def drawnormalthreeCA(suffix $, @, $$) =

2052 draw z$--z@--z$$;

2053 drawCA(@, $$);

2054 enddef;

2055

drawnormalfourCA Draw a straight normal thickness line between the four points z$, z@, z@@ and
z$$, ending in a closed arrowhead at z$$.

2056 %%% draws the normal line $--@--@@--$$, ending in a black arrowhead at $$

2057 def drawnormalfourCA(suffix $, @, @@, $$) =

2058 draw z$--z@--z@@--z$$;

2059 drawCA(@@, $$);

2060 enddef;

2061

drawnormalF Draw a straight normal thickness line between the two points z$ and z$$, ending
with a fanin, length gfl and base width gfb, at z$$.

2062 %%% draws a normal line from $ to $$, ending with a fanin at $$

2063 def drawnormalF(suffix $, $$) =

2064 draw z$--z$$;

2065 drawF($, $$);

2066 enddef;

2067

drawnormalFO Draw a straight normal thickness line between the two points z$ and z$$, ending
with a fanin, length gfl and base width gfb, at z$ and an open circle, diameter
dotdiam, at z$$.

2068 %%% draws a normal line from $ to $$, with a fanin at $ and an open circle at $$

2069 def drawnormalFO(suffix $, $$) =

2070 draw z$--z$$;

2071 drawO($, $$); drawF($$, $);

2072 enddef;

2073

drawthick Draw a straight thick line between the two points z$ and z$$

2074 %%% draws a thick line from $ to $$.

2075 def drawthick(suffix $, $$) =

2076 pickup thickpen;

2077 draw z$--z$$;

78

2078 pickup normalpen;

2079 enddef;

2080

drawthickO Draw a straight thick line between the two points z$ and z$$, ending with an
open circle, diameter dotdiam, at z$$.

2081 %%% draws a thick line from $ to $$, ending in a circle diameter dotdiam at $$

2082 def drawthickO(suffix $, $$) =

2083 pickup thickpen;

2084 draw z$--z$$;

2085 drawO($, $$);

2086 pickup normalpen;

2087 enddef;

2088

drawthickOO Draw a straight thick line between the two points z$ and z$$, ending with open
circles, diameter dotdiam, at z$ and z$$.

2089 %%% draws a thick line from $ to $$, ending in circles diameter dotdiam at $ and $$

2090 def drawthickOO(suffix $, $$) =

2091 pickup thickpen;

2092 draw z$--z$$;

2093 drawO($, $$); drawO($$, $);

2094 pickup normalpen;

2095 enddef;

2096

smooth Rounds the join at z@ between the two straight lines z$--z@--z$$. The radius
of the circular arc is smoothrad. The code employs the same technique as used
for putting dots, etc., at the end of a line. However, in this case we ‘undraw’ the
sharp corner before drawing the arc.

2097 %%% replaces the sharp corner on $--@--$$ with a circular arc radius smoothrad

2098 def smooth(suffix $, @, $$) =

2099 begingroup

2100 save v_, c_, l, p;

2101 pair v_, v_’, c_, c_’;

2102 path p;

2103 v_ := z@-z$;

2104 l := (xpart v_)++(ypart v_); % length of $--@

2105 c_ := (smoothrad/l)[z@,z$]; % start of arc on $--@

2106 v_’ := z$$-z@;

2107 l := (xpart v_’)++(ypart v_’); % length of @--$$

2108 c_’ := (smoothrad/l)[z@,z$$]; % end of arc on @--$$

2109 undraw c_--z@--c_’; % blank original join

2110 draw c_{v_}..{v_’}c_’; % draw the arc

2111 endgroup

2112 enddef;

2113

smoothtwo Rounds the joins at z@ and z@@ between the three straight lines z$--z@--z@@--z$$.
The radius of the circular arc is smoothrad.

79

2114 %%% replaces the sharp corners on $--@--@@--$$ with a circular arc radius smoothrad

2115 def smoothtwo(suffix $, @, @@, $$) =

2116 smooth($, @, @@); smooth(@, @@, $$);

2117 enddef;

2118

smoothdash Rounds the join at z@ between the two dashed straight lines z$--z@--z$$. The
radius of the circular arc is smoothrad.

2119 %%% replaces the sharp corner on the dashed lines $--@--$$

2120 %%% with a circular arc radius smoothrad

2121 def smoothdash(suffix $, @, $$) =

2122 begingroup

2123 save v_, c_, l, p;

2124 pair v_, v_’, c_, c_’;

2125 path p;

2126 v_ := z@-z$;

2127 l := (xpart v_)++(ypart v_); % length of $--@

2128 c_ := (smoothrad/l)[z@,z$]; % start of arc on $--@

2129 v_’ := z$$-z@;

2130 l := (xpart v_’)++(ypart v_’); % length of @--$$

2131 c_’ := (smoothrad/l)[z@,z$$]; % end of arc on @--$$

2132 undraw c_--z@--c_’; % blank original join

2133 draw c_{v_}..{v_’}c_’ dashes; % draw the dashed arc

2134 endgroup

2135 enddef;

2136

smoothdots Rounds the join at z@ between the two dotted straight lines z$--z@--z$$. The
radius of the circular arc is smoothrad.

2137 %%% replaces the sharp corner on the dotted line $--@--$$

2138 %%% with a circular arc radius smoothrad

2139 def smoothdots(suffix $, @, $$) =

2140 begingroup

2141 save oldpen;

2142 pen oldpen; oldpen := currentpen;

2143 save v_, c_, l, p;

2144 pair v_, v_’, c_, c_’;

2145 path p;

2146 v_ := z@-z$;

2147 l := (xpart v_)++(ypart v_); % length of $--@

2148 c_ := (smoothrad/l)[z@,z$]; % start of arc on $--@

2149 v_’ := z$$-z@;

2150 l := (xpart v_’)++(ypart v_’); % length of @--$$

2151 c_’ := (smoothrad/l)[z@,z$$]; % end of arc on @--$$

2152 undraw c_--z@--c_’; % blank original join

2153 pickup dotspen;

2154 draw c_{v_}..{v_’}c_’ dots; % draw the dotted arc

2155 pickup oldpen;

2156 endgroup

80

2157 enddef;

2158

4.6 Box drawing routines

The box drawing routines take as an argument the suffix ($) of the left-hand
bottom corner point of the box, and normally the length and height of the box.
There is normally also a text argument that gets typeset at the ‘center’ of the box.
The coordinates of the box corners are calculated (zbl, zbr, z$tr and z$tl).
The midpoints of the sides of the box (zbm, zmr, ztm, zml) are calculated as
well. The text ‘center’ of the box is z$c, while the geometric center of the box
will be at the intersection point of the lines z$bm--z$tm and z$ml--z$mr. See
Figure 5 for an illustration.

drawSCHEMA drawSCHEMA(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws a SCHEMA box.
2159 %%% draws a schema box, bottom left at $, length l, height h

2160 def drawSCHEMA(suffix $)(expr l, h)(text str) =

2161 rectpoints($, l, h);

2162 x$c = 1/2[x$ml, x$mr];

2163 y$c = 1/2[y$ml, y$tl];

2164 draw z$bl--z$br--z$tr--z$tl--cycle; % outer box

2165 draw z$ml--z$mr; % dividing line

2166 label(str, z$c);

2167 enddef;

2168

drawSDT drawSDT(〈suffix 〉)(〈name〉) draws a simple data type box of length sdtbl and
height sdtbh.

2169 % drawSDT($)(name)

2170 % draw a simple data type box, bottom left at $

2171 def drawSDT(suffix $)(text str) =

2172 rectpoints($, sdtbl, sdtbh);

2173 z$ti = (x$tr-sdtbs, y$tr);

2174 z$bi = (x$ti, y$br);

2175 z$c = 1/2[z$bl,z$ti];

2176 draw z$bl--z$br--z$tr--z$tl--cycle;

2177 draw z$bi--z$ti;

2178 label(str, z$c);

2179 enddef;

2180

drawASDT drawASDT(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws a simple data type box.
2181 % drawASDT($, l, h)(name)

2182 % draw a simple data type box, bottom left at $, length l, height h

2183 def drawASDT(suffix $)(expr l, h)(text str) =

2184 rectpoints($, l, h);

2185 z$ti = (x$tr-sdtbs, y$tr);

2186 z$bi = (x$ti, y$br);

81

2187 z$c = 1/2[z$bl,z$ti];

2188 draw z$bl--z$br--z$tr--z$tl--cycle;

2189 draw z$bi--z$ti;

2190 label(str, z$c);

2191 enddef;

2192

The drawNAME(〈suffix 〉) routines draw a simple data type box of the given
name using the applicable lengths and heights.

drawBINARY

drawBOOLEAN

drawCOMPLEX

drawEXPRESSION

2193 def drawBINARY(suffix $) = drawASDT($)(sdtbl, sdtbh)("BINARY");

2194 enddef;

2195 def drawBOOLEAN(suffix $) = drawASDT($)(sdtbl, sdtbh)("BOOLEAN");

2196 enddef;

2197 def drawCOMPLEX(suffix $) = drawASDT($)(sdtbl, sdtbh)("COMPLEX");

2198 enddef;

2199 def drawEXPRESSION(suffix $) = drawASDT($)(sdtbel, sdtbeh)("EXPRESSION");

2200 enddef;

drawGENERIC

drawINTEGER

drawLOGICAL

drawNUMBER

2201 def drawGENERIC(suffix $) = drawASDT($)(sdtbl, sdtbh)("GENERIC");

2202 enddef;

2203 def drawINTEGER(suffix $) = drawASDT($)(sdtbl, sdtbh)("INTEGER");

2204 enddef;

2205 def drawLOGICAL(suffix $) = drawASDT($)(sdtbl, sdtbh)("LOGICAL");

2206 enddef;

2207 def drawNUMBER(suffix $) = drawASDT($)(sdtbl, sdtbh)("NUMBER");

2208 enddef;

drawREAL

drawSTRING 2209 def drawREAL(suffix $) = drawASDT($)(sdtbl, sdtbh)("REAL");

2210 enddef;

2211 def drawSTRING(suffix $) = drawASDT($)(sdtbl, sdtbh)("STRING");

2212 enddef;

2213

drawENUM drawENUM(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws an ENUMERATION type box.
2214 % drawENUM($, l, h)(name)

2215 %%% draw an enumeration type box, bottom left at $, length l, height h

2216 def drawENUM(suffix $)(expr l, h)(text str) =

2217 rectpoints($, l, h);

2218 z$ti = (x$tr-sdtbs, y$tr);

2219 z$bi = (x$ti, y$br);

2220 z$c = 1/2[z$bl,z$ti];

2221 draw z$bl--z$br--z$tr--z$tl--cycle dashes;

2222 draw z$bi--z$ti dashes;

2223 label(str, z$c);

2224 enddef;

2225

82

drawSELECT drawSELECT(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws a SELECT type box.
2226 % drawSELECT($, l, h)(name)

2227 %%% draw a select type box, bottom left at $, length l, height h

2228 def drawSELECT(suffix $)(expr l, h)(text str) =

2229 rectpoints($, l, h);

2230 z$ti = (x$tl+sdtbs, y$tl);

2231 z$bi = (x$ti, y$bl);

2232 z$c = 1/2[z$br,z$ti];

2233 draw z$bl--z$br--z$tr--z$tl--cycle dashes;

2234 draw z$bi--z$ti dashes;

2235 label(str, z$c);

2236 enddef;

2237

drawTYPE drawTYPE(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws a user-defined TYPE type box.
2238 % drawTYPE($, l, h)(name)

2239 %%% draw a simple user defined TYPE box, bottom left at $, length l, height h

2240 def drawTYPE(suffix $)(expr l, h)(text str) =

2241 rectpoints($, l, h);

2242 z$c = 1/2[z$bl,z$tr];

2243 draw z$bl--z$br--z$tr--z$tl--cycle dashes;

2244 label(str, z$c);

2245 enddef;

2246

drawENT drawENT(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws an ENTITY box.
2247 % drawENT($, l, h)(name)

2248 %%% draw an entity box, bottom left at $, length l, height h

2249 def drawENT(suffix $)(expr l, h)(text str) =

2250 rectpoints($, l, h);

2251 z$c = 1/2[z$bl,z$tr];

2252 draw z$bl--z$br--z$tr--z$tl--cycle;

2253 label(str, z$c);

2254 enddef;

2255

drawOB drawOB(〈suffix 〉, 〈l〉, 〈h〉) draws a rectangular box with rounded corners (an
express-g oval box).

2256 % drawOB($, l, h)

2257 % draw an oval box, bottom left at $, length l, height h

2258 def drawOB(suffix $)(expr l, h) =

2259 save rad;

2260 numeric rad; rad := h/2;

2261 rectpoints($, l, h);

2262 z$cl = 1/2[z$bl, z$tl];

2263 z$cr = 1/2[z$br, z$tr];

2264 z$bli = (x$bl+rad, y$bl);

2265 z$tli = (x$bli, y$tl);

2266 z$bri = (x$br-rad, y$br);

83

2267 z$tri = (x$bri, y$tr);

2268 z$c = 1/2[z$bl,z$tr];

2269 draw z$bli--z$bri..z$cr..z$tri--z$tli..z$cl..cycle;

2270 enddef;

2271

drawPREF drawPREF(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws a page reference oval box.
2272 % drawPREF($, l, h)(name)

2273 %%% draw a page reference box oval, bottom left at $, length l, height h

2274 def drawPREF(suffix $)(expr l, h)(text str) =

2275 drawOB($, l, h);

2276 label(str, z$c);

2277 enddef;

2278

drawISU drawISU(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws an interschema USE box.
2279 % drawISU($, l, h)(name)

2280 %%% draw an interschema USE box, bottom left at $, length l, height h

2281 def drawISU(suffix $)(expr l, h)(text str) =

2282 save quarter;

2283 numeric quarter; quarter := h/4;

2284 rectpoints($, l, h);

2285 z$o = (x$, y$+quarter);

2286 drawOB($o, l, 2quarter);

2287 z$c = 1/2[z$bl,z$tr];

2288 label(str, z$c);

2289 draw z$bl--z$br--z$tr--z$tl--cycle;

2290 enddef;

2291

drawISUR drawISUR(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉)(〈rename〉) draws an interschema USE RE-
NAME box.

2292 % drawISUR($, l, h)(name)(rename)

2293 %%% draw an interschema USE RENAME box, bottom left at $, length l, height h

2294 def drawISUR(suffix $)(expr l, h)(text str, rname) =

2295 save third;

2296 numeric third; third := h/3;

2297 rectpoints($, l, h);

2298 z$o = (x$, y$+third);

2299 drawOB($o, l, third);

2300 z$c = 1/2[z$bl, z$tr];

2301 label(str, z$c);

2302 z$rnm = 1/2[z$bl,(xbr,ybr+third)];

2303 draw z$bl--z$br--z$tr--z$tl--cycle;

2304 label(rname, z$rnm);

2305 enddef;

2306

drawISR drawISR(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws an interschema RERERENCE box.

84

2307 % drawISR($, l, h)(name)

2308 %%% draw an interschema REFERENCE box, bottom left at $, length l, height h

2309 def drawISR(suffix $)(expr l, h)(text str) =

2310 save quarter;

2311 numeric quarter; quarter := h/4;

2312 rectpoints($, l, h);

2313 z$o = (x$, y$+quarter);

2314 drawOB($o, l, 2quarter);

2315 z$c = 1/2[z$bl,z$tr];

2316 label(str, z$c);

2317 draw z$bl--z$br--z$tr--z$tl--cycle dashes;

2318 enddef;

2319

drawISRR drawISRR(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉)(〈rename〉) draws an interschema REFER-
ENCE RENAME box.

2320 % drawISRR($, l, h)(name)(rename)

2321 %%% draw an interschema REFERENCE RENAME box, bottom left at $, length l, height h

2322 def drawISRR(suffix $)(expr l, h)(text str, rname) =

2323 save third;

2324 numeric third; third := h/3;

2325 rectpoints($, l, h);

2326 z$o = (x$, y$+third);

2327 drawOB($o, l, third);

2328 z$c = 1/2[z$bl,z$tr];

2329 label(str, z$c);

2330 z$rnm = 1/2[z$bl,(xbr,ybr+third)];

2331 draw z$bl--z$br--z$tr--z$tl--cycle dashes;

2332 label(rname, z$rnm);

2333 enddef;

2334

drawLEVENT drawLEVENT(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws a Local EVENT box, with side
slope eventslope.

2335 % drawLEVENT($, l, h)(name)

2336 %%% draw a Local EVENT box, bottom left at $, length l, height h

2337 def drawLEVENT(suffix $)(expr l, h)(text str) =

2338 rhompoints($, l, h, eventslope);

2339 z$c = 1/2[z$ml,z$mr];

2340 draw z$bl--z$br--z$tr--z$tl--cycle;

2341 label(str, z$c);

2342 enddef;

2343

drawGEVENT drawGEVENT(〈suffix 〉, 〈l〉, 〈h〉)(〈name〉) draws a Global EVENT box, with side
slope eventslope.

2344 % drawGEVENT($, l, h)(name)

2345 %%% draw a Global EVENT box, bottom left at $, length l, height h

2346 def drawGEVENT(suffix $)(expr l, h)(text str) =

85

2347 rhompoints($, l, h, eventslope);

2348 z$c = 1/2[z$ml,z$mr];

2349 pickup thickpen;

2350 draw z$bl--z$br--z$tr--z$tl--cycle;

2351 pickup normalpen;

2352 label(str, z$c);

2353 enddef;

2354

drawcirclebox drawcirclebox(〈suffix 〉, 〈diam〉)(〈name〉) draws a circle, center zsuffix and
diameter 〈diam〉, around 〈name〉.

2355 % drawcirclebox($, diam)(name)

2356 %%% draw a circled name, diameter diam centered at $

2357 def drawcirclebox(suffix $)(expr diam)(text str) =

2358 circpoints($, diam);

2359 draw z$bl..z$bm..z$br..z$mr..z$tr..z$tm..z$tl..z$ml..cycle;

2360 label(str, z$c);

2361 enddef;

2362

4.7 Extra BLA variables and routines

Some extra facilities are provided for assistance in drawing non-express-g BLA
diagrams, such as flow charts, IDEF diagrams or UML structure diagrams.

gdl

gdb

gdl is the length of a diamond line end style and gdb is the base width.
2363 %%% length and base width of diamond line end styles

2364 newinternal gdl, gdb;

2365 numeric gdl, gdb;

2366 gdl := 2defaultgal;

2367 gdb := 0.75defaultgab;

2368

ellipsepoints Calculates the points on an ellipse, center at z$ with horizontal diameter l and
vertical diameter h. It does not calculate the center point.

2369 def ellipsepoints(suffix $)(expr l, h) =

2370 save epp, move;

2371 path epp;

2372 pair move;

2373 z$ml=(x$-l/2, y$); z$mr=(x$ml+l,y$);

2374 z$tm=(x$, y$+h/2); z$bm=(x$, y$tm-h);

2375 move = 1/2[zml,zmr];

2376 epp = fullcircle scaled h xscaled (l/h) shifted move;

2377 z$tr = point 1.2 of epp;

2378 z$tl = point 2.8 of epp;

2379 z$bl = point 5.2 of epp;

2380 z$br = point 6.8 of epp;

2381 enddef;

2382

86

drawDCA Draw double closed arrowheads, each length gal and base width gab, at end of
vector from z$ to z$$.

2383 %%% draws double closed arrowheads at end of vector from $ to $$

2384 def drawDCA(suffix $, $$) =

2385 begingroup

2386 save v_, c_, v_u, c_t, c_b, l, hb, p;

2387 pair v_, c_, v_u, c_t, c_b;

2388 path p[];

2389 numeric l, hb;

2390 hb := gab/2;

2391 v_ := z$-z$$;

2392 l := (xpart v_)++(ypart v_); % length of the line

2393 c_ := (gal/(l))[z$$,z$]; % base of arrowhead

2394 v_u := unitvector v_;

2395 c_t := c_ shifted (-hb*(ypart v_u), hb*(xpart v_u));

2396 c_b - c_ = c_ - c_t;

2397 p1 := c_b--z$$--c_t--cycle;

2398 filldraw p1;

2399 p2 := p1 shifted ((xpart c_ - x$$), (ypart c_ - y$$));

2400 filldraw p2;

2401 endgroup

2402 enddef;

2403

drawOD Draw an open diamond, length gdl and base width gdb, at end of vector from z$
to z$$.

2404 %%% draws an open diamond at end of vector from $ to $$

2405 def drawOD(suffix $, $$) =

2406 begingroup

2407 save v_, c_, c__, v_u, c_t, c_b, l, hb, p;

2408 pair v_, c_, c__, v_u, c_t, c_b;

2409 numeric l, hb;

2410 path p;

2411 hb := gdb/2;

2412 v_ := z$-z$$;

2413 l := (xpart v_)++(ypart v_); % length of the line

2414 c_ := (gdl/(2l))[z$$,z$]; % base of diamond

2415 c__ := (gdl/(l))[z$$,z$]; % interior tip of diamond

2416 v_u := unitvector v_;

2417 c_t := c_ shifted (-hb*(ypart v_u), hb*(xpart v_u));

2418 c_b - c_ = c_ - c_t;

2419 p = c_b--z$$--c_t--c__--cycle;

2420 unfill p;

2421 draw p; draw p;

2422 endgroup

2423 enddef;

2424

drawCD Draw a closed diamond, length gdl and base width gdb, at end of vector from z$

87

to z$$.
2425 %%% draws a closed diamond at end of vector from $ to $$

2426 def drawCD(suffix $, $$) =

2427 begingroup

2428 save v_, c_, c__, v_u, c_t, c_b, l, hb, p;

2429 pair v_, c_, c__, v_u, c_t, c_b;

2430 numeric l, hb;

2431 path p;

2432 hb := gdb/2;

2433 v_ := z$-z$$;

2434 l := (xpart v_)++(ypart v_); % length of the line

2435 c_ := (gdl/(2l))[z$$,z$]; % base of diamond

2436 c__ := (gdl/(l))[z$$,z$]; % interior tip of diamond

2437 v_u := unitvector v_;

2438 c_t := c_ shifted (-hb*(ypart v_u), hb*(xpart v_u));

2439 c_b - c_ = c_ - c_t;

2440 p = c_b--z$$--c_t--c__--cycle;

2441 filldraw p;

2442 endgroup

2443 enddef;

2444

drawdashA Draw a straight dashed line between the two points z$ and z$$, ending with an
arrowhead, length gal and base width gab, at z$$.

2445 %%% draws a dashed line from $ to $$, ending with an arrowhead at $$

2446 def drawdashA(suffix $, $$) =

2447 draw z$--z$$ dashes;

2448 drawA($, $$);

2449 enddef;

2450

drawdashOA Draw a straight dashed line between the two points z$ and z$$, ending with an
open arrowhead, length gal and base width gab, at z$$.

2451 %%% draws a dashed line from $ to $$, ending with an open arrowhead at $$

2452 def drawdashOA(suffix $, $$) =

2453 draw z$--z$$ dashes;

2454 drawOA($, $$);

2455 enddef;

2456

drawnormalDCA Draw a straight normal line between the two points z$ and z$$, ending with
double closed arrowheads, each length gal and base width gab, at z$$.

2457 %%% draws a normal line from $ to $$, ending with double closed arrowheads at $$

2458 def drawnormalDCA(suffix $, $$) =

2459 draw z$--z$$;

2460 drawDCA($, $$);

2461 enddef;

2462

88

drawnormalOD Draw a straight normal thickness line between the two points z$ and z$$, ending
with an open diamond, length gdl and base width gdb, at z$$.

2463 %%% draws a normal line from $ to $$, ending with an open diamond at $$

2464 def drawnormalOD(suffix $, $$) =

2465 draw z$--z$$;

2466 drawOD($, $$);

2467 enddef;

2468

drawnormalCD Draw a straight normal thickness line between the two points z$ and z$$, ending
with a closed diamond, length gdl and base width gdb, at z$$.

2469 %%% draws a normal line from $ to $$, ending with a closed diamond at $$

2470 def drawnormalCD(suffix $, $$) =

2471 draw z$--z$$;

2472 drawCD($, $$);

2473 enddef;

2474

drawdashcircle Draw a normal thickness dashed open circle, center z$, diameter diam.
2475 %%% draws an open dashed circle, center z$, diameter diam

2476 def drawdashcircle(suffix $)(expr diam) =

2477 circpoints($, diam);

2478 draw z$bl..z$bm..z$br..z$mr..z$tr..z$tm..z$tl..z$ml..cycle dashes;

2479 enddef;

2480

drawcircleA Draw a normal thickness open circle, center z$, diameter diam, and with a coun-
terclockwise pointing arrow at the topmost point. The arrow has length gal and
base width gab.

2481 %%% draws an open circle, center z$, diameter diam, with an arrow at the top

2482 def drawcircleA(suffix $)(expr diam) =

2483 circpoints($, diam);

2484 begingroup

2485 save c_, c_t, c_b, hb;

2486 pair c_, c_t, c_b;

2487 numeric hb;

2488 hb := gab/2;

2489 c_ := z$tm shifted (gal*right); % base of arrowhead

2490 c_t := c_ shifted (hb*up);

2491 c_b := c_ shifted (hb*down);

2492 draw z$bl..z$bm..z$br..z$mr..z$tr..z$tm..z$tl..z$ml..cycle;

2493 draw c_t--z$tm--c_b;

2494 endgroup

2495 enddef;

2496

drawDot Draw a black dot, center z$, diameter diam.
2497 %%% draws black dot, center z$, diameter diam

2498 def drawDot(suffix $)(expr diam) =

89

2499 begingroup

2500 save p;

2501 path p;

2502 p := fullcircle scaled diam shifted z$;

2503 filldraw p;

2504 endgroup

2505 enddef;

2506

2507 % \nd{macrocode}

2508 % \end{routine}

2509 %

2510 % \begin{routine}{drawCircledDot}

2511 % Draw a black dot, center |z$|, surrounded by a circle, overall

2512 % diameter |diam|.

2513 % \changes{v1.6}{2004/02/29}{Added drawCircledDot}

2514 % \begin{macrocode}

2515 %%% draws black dot surrounded by a circle, center z$, diameter diam

2516 def drawCircledDot(suffix $)(expr diam) =

2517 begingroup

2518 save l_, p;

2519 numeric l_;

2520 path p[];

2521 l_ := 5/7diam;

2522 p1 := fullcircle scaled diam shifted z$;

2523 unfill p1;

2524 draw p1;

2525 p2 := fullcircle scaled l_ shifted z$;

2526 filldraw p2;

2527 endgroup

2528 enddef;

2529

2530 % \nd{macrocode}

2531 % \end{routine}

2532 %

2533 %

2534 % \begin{routine}{drawcardbox}

2535 % \changes{v1.1}{1999/10/30}{Added drawcardbox routine}

2536 % Draw a rectangular box that has its top righthand corner folded down.

2537 % |m| is the height/length of the fold.

2538 % \begin{macrocode}

2539 def drawcardbox(suffix $)(expr l, h, m)(text str) =

2540 rectpoints($, l, h);

2541 begingroup

2542 save c;

2543 pair c[];

2544 c1 = (x$tr-m, y$tr);

2545 c3 = (xtr, ytr-m);

2546 c2 = (xpart c1, ypart c3);

2547 draw z$bl--z$br--c3--c1--z$tl--cycle;

2548 draw c1--c2--c3;

90

2549 endgroup;

2550 z$c = 1/2[z$ml,z$mr];

2551 label(str, z$c);

2552 enddef;

2553

drawdiamondbox Draw a diamond shaped box. Like circles, the box is located at its center point
and not at the bottom left corner (see Figure 8).

2554 def drawdiamondbox(suffix $)(expr l, h)(text str) =

2555 z$ml=(x$-l/2, y$); z$tm=(x$, y$+h/2);

2556 z$mr=(x$ml+l, y$); z$bm=(x$, y$tm-h);

2557 z$bl=1/2[z$ml,z$bm];

2558 z$br=1/2[z$bm,z$mr];

2559 z$tr=1/2[z$mr,z$tm];

2560 z$tl=1/2[z$tm,z$ml];

2561 z$c=z$;

2562 draw z$ml--z$bm--z$mr--z$tm--cycle;

2563 label(str, z$c);

2564 enddef;

2565

drawtwodiamondbox Draw a diamond shaped box with a smaller diamond inside.

2566 def drawtwodiamondbox(suffix $)(expr l, h, mrg)(text str) =

2567 z$ml=(x$-l/2, y$); z$tm=(x$, y$+h/2);

2568 z$mr=(x$ml+l, y$); z$bm=(x$, y$tm-h);

2569 z$bl=1/2[z$ml,z$bm];

2570 z$br=1/2[z$bm,z$mr];

2571 z$tr=1/2[z$mr,z$tm];

2572 z$tl=1/2[z$tm,z$ml];

2573 z$c=z$;

2574 begingroup

2575 save v_, p, tl, sf;

2576 pair v_;

2577 numeric tl, sf;

2578 path p[];

2579 p1 = z$ml--z$bm--z$mr--z$tm--cycle;

2580 draw p1;

2581 v_ := z$c-z$tr;

2582 tl := (xpart v_)++(ypart v_);

2583 sf = 1.0 - mrg/tl;

2584 p2 = p1 shifted -z$c scaled sf shifted z$c;

2585 draw p2;

2586 endgroup;

2587 label(str, z$c);

2588

2589 enddef;

2590

drawdoublerectangle Draw a double box where tf is the fraction of the height of the top portion. The

91

ends of the dividing line are z$tfl and z$tfr. The text centers are z$ct and
z$cb for the top and bottom portions.

2591 def drawdoublerectangle(suffix $)(expr l, h, tf) =

2592 rectpoints($, l, h);

2593 z$tfl=tf[z$tl,z$bl]; z$tfr=tf[ztr,zbr];

2594 z$cb=1/2[z$bl,z$tfr];

2595 z$ct=1/2[z$tfl,z$tr];

2596 draw z$bl--z$br--z$tr--z$tl--cycle;

2597 draw z$tfl--z$tfr;

2598 enddef;

2599

drawtriplerectangle Draws a triple box, where tf is the fraction of the height for the top portion and
bf is the fraction of the height for the bottom portion. Text centers for the three
portions are zct, zcm and z$cb for the top, middle and bottom portions. The
points at the ends of the dividing lines are z$tfl and z$tfr for the top portion
and z$bfl and z$bfr for the bottom.

2600 def drawtriplerectangle(suffix $)(expr l, h, tf, bf) =

2601 rectpoints($, l, h);

2602 z$tfl=tf[z$tl,z$bl]; z$tfr=tf[ztr,zbr];

2603 z$bfl=bf[z$bl,z$tl]; z$bfr=bf[zbr,ztr];

2604 z$cb=1/2[z$bl,z$bfr];

2605 z$cm=1/2[z$bfl,z$tfr];

2606 z$ct=1/2[z$tfl,z$tr];

2607 draw z$bl--z$br--z$tr--z$tl--cycle;

2608 draw z$bfl--z$bfr;

2609 draw z$tfl--z$tfr;

2610 enddef;

2611

hiderectangle Draws an invisible rectangular box of the usual dimensions that covers up anything
underneath it.

2612 def hiderectangle(suffix $)(expr l, h) =

2613 begingroup

2614 save c;

2615 pair c[];

2616 c1=(x$,y$);

2617 c2=c1+(l,0);

2618 c3=c1+(l,h);

2619 c4=c1+(0,h);

2620 unfilldraw c1--c2--c3--c4--cycle;

2621 endgroup

2622 enddef;

2623

drawdashboxover Draws a dashed box that covers up anything underneath it.
2624 def drawdashboxover(suffix $)(expr l, h) =

2625 rectpoints($, l, h);

92

2626 hiderectangle($, l, h);

2627 z$c = 1/2[z$bl,z$tr];

2628 draw z$bl--z$br--z$tr--z$tl--cycle dashes;

2629 enddef;

2630

drawindexbox Draws an index box. The main box is l by h and the small box at the top left is
lp by hp. The main box points are the usual z$bl etc, but the top box points are
z$P.bl etc. The str is put at the center (z$P.c) of the small box.

2631 def drawindexbox(suffix $)(expr l, h, lp, hp)(text str) =

2632 rectpoints($, l, h);

2633 z$c = 1/2[z$bl,z$tr];

2634 z$P = z$tl;

2635 rectpoints($P, lp, hp);

2636 z$P.c = 1/2[z$P.bl, z$P.tr];

2637 draw z$bl--z$br--z$tr--z$tl--cycle;

2638 draw z$P.bl--z$P.br--z$P.tr--z$P.tl--cycle;

2639 label(str, z$P.c);

2640 enddef;

2641

drawroundedbox Draws a rectangular box with rounded corners (like the LATEX \oval). The box
is l by h and located by the bottom left corner. The corners are rounded with a
radius of r. If the radius is too large for the box it is reduced so that at least two
opposite sides are semi-circular. The str is put at the center (z$c) of the box.

2642 def drawroundedbox(suffix $)(expr l, h, r)(text str) =

2643 rectpoints($, l, h);

2644 begingroup

2645 save rad;

2646 numeric rad; rad := r;

2647 if rad > l/2:

2648 rad := l/2;

2649 fi

2650 if rad > h/2:

2651 rad := h/2;

2652 fi

2653 draw (x$br-rad, y$br){right}..{up}(xbr, ybr+rad)--

2654 (xtr, ytr-rad){up}..{left}(x$tr-rad, y$tr)--

2655 (x$tl+rad, y$tl){left}..{down}(xtl, ytl-rad)--

2656 (xbl, ybl+rad){down}..{right}(x$bl+rad, y$bl)--cycle;

2657 endgroup;

2658 z$c = 1/2[z$bl,z$tr];

2659 label(str, z$c);

2660 enddef;

2661

drawovalbox Draws an elliptical box with horizontal diameter l and vertical diameter h. The
box is located by the center point.

2662 def drawovalbox(suffix $)(expr l, h)(text str) =

93

2663 ellipsepoints($, l, h);

2664 z$c = 1/2[z$ml,z$mr];

2665 begingroup

2666 save p;

2667 path p;

2668 p = fullcircle scaled h xscaled (l/h) shifted z$c;

2669 draw p;

2670 endgroup;

2671 label(str, z$c);

2672 enddef;

2673

drawdashellipse Draws a dashed elliptical box with horizontal diameter l and vertical diameter h.
The ellipse is located by the center point.

2674 def drawdashellipse(suffix $)(expr l, h) =

2675 ellipsepoints($, l, h);

2676 z$c = 1/2[z$ml,z$mr];

2677 begingroup

2678 save p;

2679 path p;

2680 p = fullcircle scaled h xscaled (l/h) shifted z$c;

2681 draw p dashes;

2682 endgroup

2683 enddef;

2684

drawdrum Draws a drum box with length l and height h. The top and bottom ellipse
minor/major diamter ratio id drumlid. The text is put at the (curved) center of
the drum.

2685 def drawdrum(suffix $)(expr l, h)(text str) =

2686 save vdia; numeric vdia;

2687 vdia := drumlid*l; % ellipse vertical diameter

2688 save pf, ph; path pf, ph; % full & half ellipse paths

2689

2690 % points on the basic rectangle

2691 z$bl = z$;

2692 z$tr = (x$+l, y$+h);

2693 z$br = (x$tr, y$);

2694 z$tl = (x$, y$tr);

2695 z$ml = 1/2[z$bl,z$tl];

2696 z$mr = 1/2[z$br,z$tr];

2697 z$tc = 1/2[z$tl,z$tr]; % center of top rectangle line

2698 z$bc = 1/2[z$bl,z$br];

2699 % draw box sides

2700 draw z$tl--z$bl; draw z$tr--z$br;

2701

2702 % points on top ellipse

2703 z$T’’’ = z$tc; % ellipse center

2704 ellipsepoints($T’’’, l, vdia);

94

2705 z$tm = z$T’’’.tm;

2706 z$tml = z$T’’’.tl;

2707 z$tmr = z$T’’’.tr;

2708

2709 % points on bottom ellipse

2710 z$B’’’ = z$bc;

2711 ellipsepoints($B’’’, l, vdia);

2712 z$bm = z$B’’’.bm;

2713 z$bml = z$B’’’.bl;

2714 z$bmr = z$B’’’.br;

2715

2716 % box center point

2717 z$c = 1/2[z$T’’’.bm, z$B’’’.bm];

2718

2719 % draw top ellipse

2720 pf = fullcircle scaled vdia xscaled (l/vdia) shifted z$T’’’;

2721 draw pf;

2722 % draw bottom half ellipse

2723 ph = (halfcircle rotated 180) scaled vdia xscaled (l/vdia) shifted z$B’’’;

2724 draw ph;

2725 label(str, z$c);

2726 enddef;

2727

drawoutputbox Draws an output box. The box is l by h and the str is put at the center. The
bottom of the box is a wavy line.

This code was supplied by Guy Worthington (see comp.text.tex news-
group thread Trial, ignore, January 2004, and in particuar Guy’s message of
2004/01/27).

2728 def drawoutputbox(suffix $)(expr l, h)(text str) =

2729 rectpoints($, l, h);

2730 begingroup

2731 save c;

2732 pair c[];

2733 c1 = (xbr, ybr+1/8h); % right side of box is shorter

2734 c2 = (xbm, ybm+1/16h);

2735 % draw the tear

2736 draw z$bl..c2{dir 45}..c1{dir -15}--z$tr--z$tl--cycle;

2737 endgroup;

2738 z$c = (x$bm, 1/2(y$bm+y$tm));

2739 label(str, z$c);

2740 enddef;

2741

drawstickman Draws a full frontal genderless stick figure, inside a rectangle l by h.
2742 \def drawstickman(suffix $)(expr l, h) =

2743 rectpoints($,l,h);

2744 begingroup

2745 save c;

95

2746 pair c[];

2747 c1 = 8/24[zbm,ztm];

2748 c2 = 15/24[zbm,ztm];

2749 c3 = 18/24[zbm,ztm];

2750 c4 = 1/2[c3,z$tm];

2751 c6 = (x$bl, ypart(c2));

2752 c7 = (x$br, ypart(c2));

2753 draw z$bl--c1--z$br; % legs

2754 draw c1--c3; % body

2755 draw c6--c7; % arms

2756 draw c3{right}..z$tm{left}..cycle; % head

2757 endgroup;

2758 enddef;

2759

The end of the package

2760 〈/up〉

References

[EN89] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems.
Benjamin Cummings Publishing Co. Inc., 1989.

[GMS94] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The La-
TeX Companion. Addison-Wesley Publishing Company, 1994.

[GRM97] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach. The LaTeX
Graphics Companion. Addison-Wesley Publishing Company, 1997.

[Hob92] John D. Hobby. A user’s manual for MetaPost. Computing Science
Technical Report no. 162, AT&T Bell Laboratories, Murray Hill, NJ,
April 1992. (Available from CTAN with the MetaPost distribution in
.../graphics/metapost).

[Hoe98] Alan Hoenig. TeX Unbound. Oxford University Press, 1998.

[IDE85] AFWAL/MLTC, Wright-Patterson AFB, OH. Integrated Informatiuon
Support Systems (IISS), Vol. V: Common Data Model Subsystem,
Part 4: Information Modeling Manual — IDEF1X. Report Number:
AFWAL–TR–86–4006, Volume V, 1985.

[ISO87] ISO TR9007. Information processing systems — Concepts and termi-
nology for the conceptual schema and the information base, 1987.

[ISO94] ISO 10303-11:1994. Industrial automation systems and integration —
Product data representation and exchange — Part 11: Description
methods: The EXPRESS language reference manual, 1994.

96

[Knu86] Donald E Knuth. The METAFONTbook. Addison-Wesley Publishing
Company, 1986.

[Lam94] Leslie Lamport. LATEX: A Document Preperation System. Second
edition. Addison-Wesley Publishing Company, 1994.

[NH89] G. M. Nijssen and T. A. Halpin. Conceptual Schema and Relational
Database Design. Prentice Hall, 1989.

[Rec97] Keith Reckdahl. Using EPS Graphics in LaTeX2e Documents. Febru-
ary 1997. (Available from CTAN as ../info/epslatex.ps).

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen.
Object-Oriented Modeling and Design Prentice Hall, 1991.

[SW94] Douglas A. Schenck and Peter R. Wilson. Information Modeling the
EXPRESS Way. Oxford University Press, 1994. (ISBN 0-19-508714-3)

[SM88] S. Shlaer and S. J. Mellor. Object-Oriented System Analysis. Yourdon
Press, 1988.

[Wil99] Peter Wilson. Some Experiences in Running METAFONT
and MetaPost. November, 1999. (Available from CTAN as
../info/metafp.ps).

Note: See http://www.tug.org for information on accessing CTAN — the
Comprehensive TEX Archive Network.

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

++ (r) 70

_ 32, 41, 272,
306, 327, 330,
339, 361, 366,
382, 404, 407,
470, 492, 547,
561, 614, 620,
646, 826, 857,
861, 866, 878, 1111

~ (r) 8, 1745

B

\bf 1018, 1038, 1044, 1052

C

\caption 1369, 1375,
1381, 1387,
1393, 1399,
1405, 1411,
1417, 1423, 1429

\centering 1367, 1373,
1379, 1385,
1391, 1397,
1403, 1409,
1415, 1421, 1427

\changes . . . 2513, 2535

circpoints (r) 1727

\columnsep 1351

D
\d 1479
dashedgrid (r) 1676
dashes (r) 7, 1668
\DeclareGraphicsRule

. 1339
defaultdotdiam (v) 1519
defaultdrumlid (v) 1544
defaultfont (v) 61
defaultgab (v) 1548
defaultgal (v) 1548
defaultgfb (v) 1548
defaultgfl (v) 1548
defaultsmoothrad (v)

. 1540

97

dotdiam (v) 4, 1519

dotlabel (r) 26

dotpen (v) 4, 1532

dots (r) 7, 1672

dotspen (v) 4, 1532

dotsscale (v) 1529

drawA (r) 13, 1839

drawASDT (r) 2181

drawBINARY (r) . 10, 2193

drawBOOLEAN (r) 11, 2193

drawCA (r) 8, 1820

drawcardbox (r) 14

drawCD (r) 14, 2425

drawcircleA (r) 14, 2481

drawcirclebox (r) 13, 2355

drawCircledDot (r) . . 14

drawCOMPLEX (r) 11, 2193

drawD (r) 8, 1785

drawdash (r) 8, 1930

drawdashA (r) . . 14, 2445

drawdashboxover (r) .
. 15, 2624

drawdashcircle (r) . .
. 13, 2475

drawdashellipse (r) .
. 16, 2674

drawdashfour (r) 8, 1940

drawdashfourO (r) 9, 1957

drawdashO (r) . . . 8, 1945

drawdashOA (r) . 14, 2451

drawdashOO (r) . . 9, 1963

drawdashthree (r) 8, 1935

drawdashthreeO (r) 8, 1951

drawDCA (r) . . . 13, 2383

drawdiamondbox (r) . .
. 15, 2554

drawDot (r) . . . 14, 2497

drawdots (r) 8, 1877

drawdotsfour (r) 8, 1891

drawdotsfourO (r) 8, 1914

drawdotsO (r) . . . 8, 1898

drawdotsOO (r) . . 8, 1922

drawdotsthree (r) 8, 1884

drawdotsthreeO (r) 8, 1906

drawdoublerectangle

(r) 15, 2591

drawdrum (r) . . . 16, 2685

drawENT (r) . . . 12, 2247

drawENUM (r) . . . 11, 2214

drawEXPRESSION (r) . .
. 11, 2193

drawF (r) 8, 1858
drawGENERIC (r) 11, 2201
drawGEVENT (r) . 13, 2344
drawgrid (r) 7, 1695
drawindexbox (r) 16, 2631
drawINTEGER (r) 11, 2201
drawISR (r) . . . 12, 2307
drawISRR (r) . . . 12, 2320
drawISU (r) . . . 12, 2279
drawISUR (r) . . . 12, 2292
drawLEVENT (r) . 12, 2335
drawLOGICAL (r) 11, 2201
drawnormal (r) . . 9, 1970
drawnormalCA (r) 9, 2044
drawnormalCD (r) 14, 2469
drawnormalD (r) . 9, 2013
drawnormalDCA (r) . 2457
drawnormalDD (r) 9, 2032
drawnormalF (r) . 9, 2062
drawnormalFO (r) 9, 2068
drawnormalfour (r) 9, 1981
drawnormalfourCA (r)

. 9, 2056
drawnormalfourD (r) .

. 9, 2025
drawnormalfourO (r) .

. 9, 1999
drawnormalO (r) . 9, 1986
drawnormalOA (r) 9, 2038
drawnormalOD (r) 14, 2463
drawnormalOO (r) 9, 2006
drawnormalthree (r) .

. 9, 1975
drawnormalthreeCA (r)

. 9, 2050
drawnormalthreeD (r)

. 9, 2019
drawnormalthreeO (r)

. 9, 1993
drawNUMBER (r) . 11, 2201
drawO (r) 8, 1769
drawOA (r) 8, 1800
drawOB (r) 2256
drawOD (r) 13, 2404
drawoutputbox (r) 16, 2728
drawovalbox (r) 16, 2662
drawPREF (r) . . . 12, 2272
drawREAL (r) . . . 11, 2209

drawroundedbox (r) . .
. 16, 2642

drawSCHEMA (r) . 10, 2159
drawSDT (r) 2169
drawSELECT (r) . 11, 2226
drawstickman (r) 16, 2742
drawSTRING (r) . 11, 2209
drawthick (r) . . . 9, 2074
drawthickO (r) . . 9, 2081
drawthickOO (r) . 9, 2089
drawtriplerectangle

(r) 15, 2600
drawtwodiamondbox (r)

. 15, 2566
drawTYPE (r) . . . 12, 2238
drumlid (v) 4, 1544

E
ellipsepoints (r) . 2369
enth (v) 5, 1594
\evensidemargin . . .

. 1354, 1362
eventh (v) 5, 1611
eventslope (v) . . 5, 1611

F
\footnotesep 1358
\footskip 1348

G
gab (v) 4, 1554
gal (v) 4, 1554
gdb (v) 13, 2363
gdl (v) 13, 2363
gfb (v) 4, 1554
gfl (v) 4, 1554

H
\headheight 1345
\headsep 1346
hiderectangle (r) 15, 2612
HvH (r) 6, 1642
HxH (r) 7, 1656

I
\ifpdf 1329, 1336
\includegraphics . .

. . . 1368, 1374,
1380, 1386,
1392, 1398,

98

1404, 1410,
1416, 1422, 1428

ish (v) 5, 1600
isrh (v) 5, 1600
\it . . . 1060, 1066, 1071

L
label (r) 26

M
\marginparpush . . . 1357
\marginparsep 1356
\marginparwidth . . 1355
maxx (v) 4, 1514
maxy (v) 4, 1514
mediation (r) 20

N
\n 1472, 1473
namespace (r) . . . 7, 1663
\nd 2507, 2530
ndextra (v) 5, 1623
\newif 1329
nextra (v) 5, 1617
niextra (v) 5, 1617
normalpen (v) . . . 4, 1532
normalpensize (v) . 1524
\nTry 1472, 1473

O
\oddsidemargin

. 1353, 1361
onelineh (v) . . . 5, 1562

P
pconh (v) 5, 1589
pconl (v) 5, 1585
\pdffalse 1331
\pdfoutput . 1330, 1337
\pdftrue 1333
pickup (r) 26
prologues (v) 61

R
rectpoints (r) 1700
rhompoints (r) 1713
rotatedaround (r) . . 24
routines:

++ 70
~ 8, 1745

circpoints 1727
dashedgrid 1676
dashes 7, 1668
dotlabel 26
dots 7, 1672
drawA 13, 1839
drawASDT 2181
drawBINARY . 10, 2193
drawBOOLEAN 11, 2193
drawCA 8, 1820
drawcardbox 14
drawCD 14, 2425
drawcircleA 14, 2481
drawcirclebox . .

. 13, 2355
drawCircledDot . 14
drawCOMPLEX 11, 2193
drawD 8, 1785
drawdash . . . 8, 1930
drawdashA . . 14, 2445
drawdashboxover

. 15, 2624
drawdashcircle .

. 13, 2475
drawdashellipse

. 16, 2674
drawdashfour 8, 1940
drawdashfourO 9, 1957
drawdashO . . . 8, 1945
drawdashOA . 14, 2451
drawdashOO . . 9, 1963
drawdashthree 8, 1935
drawdashthreeO .

. 8, 1951
drawDCA . . . 13, 2383
drawdiamondbox .

. 15, 2554
drawDot . . . 14, 2497
drawdots . . . 8, 1877
drawdotsfour 8, 1891
drawdotsfourO 8, 1914
drawdotsO . . . 8, 1898
drawdotsOO . . 8, 1922
drawdotsthree 8, 1884
drawdotsthreeO .

. 8, 1906
drawdoublerectangle

. 15, 2591
drawdrum . . 16, 2685
drawENT . . . 12, 2247

drawENUM . . 11, 2214
drawEXPRESSION .

. 11, 2193
drawF 8, 1858
drawGENERIC 11, 2201
drawGEVENT . 13, 2344
drawgrid . . . 7, 1695
drawindexbox 16, 2631
drawINTEGER 11, 2201
drawISR . . . 12, 2307
drawISRR . . 12, 2320
drawISU . . . 12, 2279
drawISUR . . 12, 2292
drawLEVENT . 12, 2335
drawLOGICAL 11, 2201
drawnormal . . 9, 1970
drawnormalCA 9, 2044
drawnormalCD 14, 2469
drawnormalD . 9, 2013
drawnormalDCA . 2457
drawnormalDD 9, 2032
drawnormalF . 9, 2062
drawnormalFO 9, 2068
drawnormalfour .

. 9, 1981
drawnormalfourCA

. 9, 2056
drawnormalfourD

. 9, 2025
drawnormalfourO

. 9, 1999
drawnormalO . 9, 1986
drawnormalOA 9, 2038
drawnormalOD 14, 2463
drawnormalOO 9, 2006
drawnormalthree

. 9, 1975
drawnormalthreeCA

. 9, 2050
drawnormalthreeD

. 9, 2019
drawnormalthreeO

. 9, 1993
drawNUMBER . 11, 2201
drawO 8, 1769
drawOA 8, 1800
drawOB 2256
drawOD 13, 2404
drawoutputbox . .

. 16, 2728

99

drawovalbox 16, 2662
drawPREF . . 12, 2272
drawREAL . . 11, 2209
drawroundedbox .

. 16, 2642
drawSCHEMA . 10, 2159
drawSDT 2169
drawSELECT . 11, 2226
drawstickman 16, 2742
drawSTRING . 11, 2209
drawthick . . . 9, 2074
drawthickO . . 9, 2081
drawthickOO . 9, 2089
drawtriplerectangle

. 15, 2600
drawtwodiamondbox

. 15, 2566
drawTYPE . . 12, 2238
ellipsepoints . 2369
hiderectangle . .

. 15, 2612
HvH 6, 1642
HxH 7, 1656
label 26
mediation 20
namespace . . . 7, 1663
pickup 26
rectpoints 1700
rhompoints 1713
rotatedaround . . 24
sharply 7, 1757
shifted 20
smooth 10, 2097
smoothdash . 10, 2119
smoothdots . 10, 2137
smoothly . . . 7, 1763
smoothtwo . . 10, 2114
VH 6, 1628
VhV 6, 1634
VyV 6, 1649
xpart 70
ypart 70

S
schemah (v) 5, 1606
sdtbeh (v) 1573
sdtbel (v) 1573
sdtbes (v) 1573
sdtbgeh (v) 5, 1579
sdtbgel (v) 5, 1579

sdtbges (v) 5, 1579
sdtbh (v) 5, 1566
sdtbl (v) 5, 1566
sdtbs (v) 5, 1566
sdtebh (v) 5
sdtebl (v) 5
sdtebs (v) 5
sharply (r) 7, 1757
shifted (r) 20
smooth (r) 10, 2097
smoothdash (r) . 10, 2119
smoothdots (r) . 10, 2137
smoothly (r) 7, 1763
smoothrad (v) . . . 4, 1540
smoothtwo (r) . . 10, 2114

T
\textheight 1350
\textwidth 1349
thickpen (v) . . . 4, 1532
thinpen (v) 1532
thinpenpen (v) 4
\topmargin . 1352, 1360
\topskip 1347
\twolines

5, 6, 470, 765, 1139
typeh (v) 5, 1594

U
u (v) 4, 1511

V
variables:

defaultdotdiam 1519
defaultdrumlid 1544
defaultfont 61
defaultgab 1548
defaultgal 1548
defaultgfb 1548
defaultgfl 1548
defaultsmoothrad

. 1540
dotdiam 4, 1519
dotpen 4, 1532
dotspen 4, 1532
dotsscale 1529
drumlid 4, 1544
enth 5, 1594
eventh 5, 1611
eventslope . . 5, 1611

gab 4, 1554
gal 4, 1554
gdb 13, 2363
gdl 13, 2363
gfb 4, 1554
gfl 4, 1554
ish 5, 1600
isrh 5, 1600
maxx 4, 1514
maxy 4, 1514
ndextra 5, 1623
nextra 5, 1617
niextra 5, 1617
normalpen . . . 4, 1532
normalpensize . 1524
onelineh . . . 5, 1562
pconh 5, 1589
pconl 5, 1585
prologues 61
schemah 5, 1606
sdtbeh 1573
sdtbel 1573
sdtbes 1573
sdtbgeh 5, 1579
sdtbgel 5, 1579
sdtbges 5, 1579
sdtbh 5, 1566
sdtbl 5, 1566
sdtbs 5, 1566
sdtebh 5
sdtebl 5
sdtebs 5
smoothrad . . . 4, 1540
thickpen . . . 4, 1532
thinpen 1532
thinpenpen 4
typeh 5, 1594
u 4, 1511
whatever 51

\vbox 6
VH (r) 6, 1628
VhV (r) 6, 1634
VyV (r) 6, 1649

W
\w 1479
whatever (v) 51

X
xpart (r) 70

100

Y
ypart (r) 70

101

